AI based Mental Health Assisted Chatbot System
The rise of mental health issues globally has necessitated innovative solutions to enhance access to support and resources. In response, this study presents a Mental Health Assisted Chatbot System powered by machine learning algorithms. Leveraging natural language processing (NLP) techniques and sen...
Saved in:
Published in | 2024 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS) pp. 1 - 6 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
08.10.2024
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICPECTS62210.2024.10780017 |
Cover
Abstract | The rise of mental health issues globally has necessitated innovative solutions to enhance access to support and resources. In response, this study presents a Mental Health Assisted Chatbot System powered by machine learning algorithms. Leveraging natural language processing (NLP) techniques and sentiment analysis, the chatbot engages users in empathetic conversations, offering personalized support, psycho education, and therapeutic interventions. Through continuous monitoring and analysis of user inputs, the system detects patterns, tracks mood fluctuations, and provides proactive interventions when necessary. While promising, the deployment of such systems raises important considerations regarding privacy, data security, and ethical guidelines. By addressing these challenges, mental health assistant chatbots have the potential to significantly augment mental health care delivery and empower individuals to manage their well-being effectively. |
---|---|
AbstractList | The rise of mental health issues globally has necessitated innovative solutions to enhance access to support and resources. In response, this study presents a Mental Health Assisted Chatbot System powered by machine learning algorithms. Leveraging natural language processing (NLP) techniques and sentiment analysis, the chatbot engages users in empathetic conversations, offering personalized support, psycho education, and therapeutic interventions. Through continuous monitoring and analysis of user inputs, the system detects patterns, tracks mood fluctuations, and provides proactive interventions when necessary. While promising, the deployment of such systems raises important considerations regarding privacy, data security, and ethical guidelines. By addressing these challenges, mental health assistant chatbots have the potential to significantly augment mental health care delivery and empower individuals to manage their well-being effectively. |
Author | Prathaban, Banu Priya A, Ashwini G, Lakshmi Subash, R. |
Author_xml | – sequence: 1 givenname: Banu Priya surname: Prathaban fullname: Prathaban, Banu Priya email: banuprip2@srmist.edu.in organization: SRM Institute of Science and Technology,Depatment of Networking and Communications,Chennai,India – sequence: 2 givenname: R. surname: Subash fullname: Subash, R. email: subashr@srmist.edu.in organization: SRM Institute of Science and Technology,Depatment of Computing Technologies,Chennai,India – sequence: 3 givenname: Ashwini surname: A fullname: A, Ashwini email: a.aswiniur@gmail.com organization: Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology,Department of ECE,Chennai,India – sequence: 4 givenname: Lakshmi surname: G fullname: G, Lakshmi email: lakshmig.ece@sairam.edu.in organization: Sri Sairam Engineering College,Department of ECE,Chennai,India |
BookMark | eNo1j7FqwzAURVVohzbNH3QQ3e1KepL1NBqTNoaEFuI9SNYzMThOibTk72toOx3uGS6cJ3Y_X2Zi7FWKUkrh3trma9N0h0qpxSihdCmFRSGkvWNrZx0CSCMQtXlkZd3y4BNFvqc5-4lvyU_5xOuUxpQX3Zx8DpfMD7dlnp_Zw-CnROs_rlj3vumabbH7_GibeleMTubCVIiDtFEp0JWNAykJDvowOJA6AiFiX0VNwVeDCz0SRW0QnfEAiryFFXv5vR2J6Ph9Hc_-ejv-V8APmvJBPg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICPECTS62210.2024.10780017 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798331508845 |
EndPage | 6 |
ExternalDocumentID | 10780017 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i91t-5688f17d223467dfe21393cbf9314d3e888c6d4eba6f9bc8eed458895a332ea73 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:33:34 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i91t-5688f17d223467dfe21393cbf9314d3e888c6d4eba6f9bc8eed458895a332ea73 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10780017 |
PublicationCentury | 2000 |
PublicationDate | 2024-Oct.-8 |
PublicationDateYYYYMMDD | 2024-10-08 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.-8 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | 2024 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS) |
PublicationTitleAbbrev | ICPECTS |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.897769 |
Snippet | The rise of mental health issues globally has necessitated innovative solutions to enhance access to support and resources. In response, this study presents a... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Chatbot Chatbots Data privacy Ethics Machine learning Machine learning algorithms Mental health Natural language processing Process control Refining Sentiment analysis Usability User experience |
Title | AI based Mental Health Assisted Chatbot System |
URI | https://ieeexplore.ieee.org/document/10780017 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qVnyTg9ddzWY32RxlaWkFS8EKvZVJMkERWpHtxV_fPLqKguAtBEIeQ-bLJPN9IeQGLDMAqLIq3lYZYzMAqTOnfHzBwEiMCnyPUzF-Lh8W1WJHVo9cGESMyWeYh2J8y7drswlXZX6Hyzq41R7pSakSWWsnJMru1O2kmQ2b-ZMoipDg7MEn7xr8-DolIsfogEy7PlPCyFu-aXVuPn_JMf57UIdk8E3So7Mv-Dkie7g6Jvn9hAZgsjSJ89BEM6LeCsGeljYv0Op1S5NS-YDMR8N5M852XyJkr4q1WSXq2jFpPaZ7B2cdFv4Ax412irPScvThrBG2RA3CKW1qP4LARFUVcF4gSH5C-qv1Ck8JFeBBiwFH53ipawk-WlWFsE5K54woz8ggzHX5nkQvlt00z_-ovyD7YclTetwl6bcfG7zyeN3q62inLbH5lWU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60HvSkYsW3OXjd1d3sJpujLJVW21Jwhd5KHhMUoRXZXvz15tEqCoK3EAh5DJkvk8z3BeBKmkxLiSIpw22V1iaRkqvEChdfZFJzDAp8ozHrPxX303K6IqsHLgwihuQzTH0xvOWbhV76qzK3w3nl3eombJUurOCRrrWSEs1uxPWgnvTq5pHluU9xdvCTrpv8-DwlYMfdLozXvcaUkdd02apUf_wSZPz3sPag-03TI5MvANqHDZwfQHo7IB6aDInyPCQSjYizg7eoIfWzbNWiJVGrvAvNXa-p-8nqU4TkRWRtUrKqshk3DtWdizMWc3eEo1pZQbPCUHQBrWamQCWZFUpXbgSeiypKSWmOktND6MwXczwCwqSDrUxStJYWquLSxasiZ8Zybq1mxTF0_Vxnb1H2Yrae5skf9Zew3W9Gw9lwMH44hR2__DFZ7gw67fsSzx16t-oi2OwTwUWYtg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Power%2C+Energy%2C+Control+and+Transmission+Systems+%28ICPECTS%29&rft.atitle=AI+based+Mental+Health+Assisted+Chatbot+System&rft.au=Prathaban%2C+Banu+Priya&rft.au=Subash%2C+R.&rft.au=A%2C+Ashwini&rft.au=G%2C+Lakshmi&rft.date=2024-10-08&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICPECTS62210.2024.10780017&rft.externalDocID=10780017 |