Research on an Image Recognition Automatic Counting System Based on Improved YOLOv8

This paper proposes a deep learning-based automatic target counting system for industrial environments. The system features enhanced YOLOv8 for small target detection using attention mechanisms and optimized training strategies. It also customizes the DeepSort algorithm for improved robustness in in...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Conference on Power, Intelligent Computing and Systems (Online) pp. 1417 - 1421
Main Authors Chen, Jiaqi, Zhao, Jiaxi, Zhang, Deyong, Ye, Zhimin, Liu, Jianyou, Huang, Wen
Format Conference Proceeding
LanguageEnglish
Published IEEE 26.07.2024
Subjects
Online AccessGet full text
ISSN2834-8567
DOI10.1109/ICPICS62053.2024.10795929

Cover

Abstract This paper proposes a deep learning-based automatic target counting system for industrial environments. The system features enhanced YOLOv8 for small target detection using attention mechanisms and optimized training strategies. It also customizes the DeepSort algorithm for improved robustness in industrial multi-object tracking. Utilizing GPU acceleration, the system achieves real-time response within 0.2 seconds. Testing with simulated and real data shows a detection mAP of 88.7%, a tracking MOTA of 91.5%, and a counting accuracy of 96.8%. This system meets industrial requirements for automation, real-time performance, and reliability, offering promising application prospects.
AbstractList This paper proposes a deep learning-based automatic target counting system for industrial environments. The system features enhanced YOLOv8 for small target detection using attention mechanisms and optimized training strategies. It also customizes the DeepSort algorithm for improved robustness in industrial multi-object tracking. Utilizing GPU acceleration, the system achieves real-time response within 0.2 seconds. Testing with simulated and real data shows a detection mAP of 88.7%, a tracking MOTA of 91.5%, and a counting accuracy of 96.8%. This system meets industrial requirements for automation, real-time performance, and reliability, offering promising application prospects.
Author Huang, Wen
Chen, Jiaqi
Ye, Zhimin
Zhao, Jiaxi
Zhang, Deyong
Liu, Jianyou
Author_xml – sequence: 1
  givenname: Jiaqi
  surname: Chen
  fullname: Chen, Jiaqi
  email: 13827248233@163.com
  organization: Guangdong Technology College,Zhaoqing,China
– sequence: 2
  givenname: Jiaxi
  surname: Zhao
  fullname: Zhao, Jiaxi
  email: Zhaojx2024@mail.sustech.edu.cn
  organization: Southern University of Science and Technology,Shenzhen,China
– sequence: 3
  givenname: Deyong
  surname: Zhang
  fullname: Zhang, Deyong
  email: dengfenglai624@gmail.com
  organization: Guangdong Technology College,Zhaoqing,China
– sequence: 4
  givenname: Zhimin
  surname: Ye
  fullname: Ye, Zhimin
  email: dexianyincha0@163.com
  organization: Guangdong Technology College,Zhaoqing,China
– sequence: 5
  givenname: Jianyou
  surname: Liu
  fullname: Liu, Jianyou
  email: rghthtyujyt@foxmail.com
  organization: Guangdong Technology College,Zhaoqing,China
– sequence: 6
  givenname: Wen
  surname: Huang
  fullname: Huang, Wen
  email: 13005203573@163.com
  organization: Guangdong Technology College,Zhaoqing,China
BookMark eNo1kNtKw0AYhFdRsNa-gRfrA6T-e969rMFDIFBpe-NV2W7-1BWzKUla6Nvbol7Nx8AMw9ySq9QmJOSBwZQxcI9F_l7kS81BiSkHLqcMjFOOuwsyccZZoUAYKZi6JCNuhcys0uaGTPr-CwAEZ8xYOyLLBfbou_BJ20R9okXjt0gXGNptikM8mbP90DZ-iIHm7T4NMW3p8tgP2NAn32N1zhXNrmsPJ_6Yl_ODvSPXtf_ucfKnY7J6eV7lb1k5fy3yWZlFx4ZMqMpraQQYU5uANau810biRpzRVtowLSHY2vnTWAm12nApQ4CNch61FmNy_1sbEXG962Lju-P6_wbxA-tbU_Y
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPICS62053.2024.10795929
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès UT - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350374315
EISSN 2834-8567
EndPage 1421
ExternalDocumentID 10795929
Genre orig-research
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i91t-35da6473077f7cef1daa674eb3f1da8d671640c8f9a21140f5b244cc0b59ae663
IEDL.DBID RIE
IngestDate Wed Jan 01 06:01:57 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-35da6473077f7cef1daa674eb3f1da8d671640c8f9a21140f5b244cc0b59ae663
PageCount 5
ParticipantIDs ieee_primary_10795929
PublicationCentury 2000
PublicationDate 2024-July-26
PublicationDateYYYYMMDD 2024-07-26
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-26
  day: 26
PublicationDecade 2020
PublicationTitle IEEE International Conference on Power, Intelligent Computing and Systems (Online)
PublicationTitleAbbrev ICPICS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211788
Score 1.8807014
Snippet This paper proposes a deep learning-based automatic target counting system for industrial environments. The system features enhanced YOLOv8 for small target...
SourceID ieee
SourceType Publisher
StartPage 1417
SubjectTerms Accuracy
Automatic counting
Industrial automation
Logistics
Object detection
Production
Real-time systems
Robustness
Target detection
Target tracking
Testing
Training
Warehousing
Title Research on an Image Recognition Automatic Counting System Based on Improved YOLOv8
URI https://ieeexplore.ieee.org/document/10795929
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9uD-KTihO_ieBra5elSfuoxbGJbMNNmE8jnyBiO6T1wb_eS9pOFATfjkAgXHK9-13v7ofQlaIylUyRwAguHYWZAZuLJQRyKtK2nxglfZXvhI2e6P0yXjbN6r4Xxhjji89M6ET_L18XqnKpMrBwx4xN0g7q8ITVzVqbhMoAoAzguW102czRvB5ns3E2ZwTeGQBBQsN2_w8mFe9Ihrto0h6hrh95DatShurz13TGf59xD_W-e_bwbOON9tGWyQ_QvC2sw0WORY7Hb_D5wI9t0RAs3lRl4ae24qxhjcD1EHN8C_5Nu3113gHk5-nD9CPpocXwbpGNgoZGIXhJ-2UwiLVgFAyZc8uVsX0tBOMUQLQTE80cYopUYlMBGqSRjSW4fKUiGafCQEByiLp5kZsjhAFMEnh5g8iqlCoLsSXngjBOpJZay-gY9ZxCVut6UMaq1cXJH-unaMfdi0uVEnaGuuV7Zc7Bx5fywt_tF3aIpsU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60gnpSseLbFbwmppvNbnLUYGm0tsVWqKeyr4CIiUjiwV_vbB4VBcHbsJCwzO5k5pvMzIfQhaIykkwRxwguLYWZAZsLJARyytNpLzRKVlW-IzZ4pLfzYN40q1e9MMaYqvjMuFas_uXrXJU2VQYWbpmxSbSK1gJKaVC3ay1TKj6AGUB06-i8maR5mcSTJJ4yAjcNoCChbvuGH1wqlSvpb6FRu4m6guTFLQvpqs9f8xn_vctt1P3u2sOTpT_aQSsm20XTtrQO5xkWGU5e4QOCH9qyIVi8Kou8mtuK44Y3AtdjzPE1eDhtn6szDyA_jYfjj7CLZv2bWTxwGiIF5znqFY4faMEomDLnKVcm7WkhGKcAo60YamYxk6fCNBKgQeqlgQSnr5Qng0gYCEn2UCfLM7OPMMBJAnfP91IVUZVCdMm5IIwTqaXW0jtAXauQxVs9KmPR6uLwj_UztDGY3Q8Xw2R0d4Q27RnZxClhx6hTvJfmBDx-IU-rc_4CY0qqEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Power%2C+Intelligent+Computing+and+Systems+%28Online%29&rft.atitle=Research+on+an+Image+Recognition+Automatic+Counting+System+Based+on+Improved+YOLOv8&rft.au=Chen%2C+Jiaqi&rft.au=Zhao%2C+Jiaxi&rft.au=Zhang%2C+Deyong&rft.au=Ye%2C+Zhimin&rft.date=2024-07-26&rft.pub=IEEE&rft.eissn=2834-8567&rft.spage=1417&rft.epage=1421&rft_id=info:doi/10.1109%2FICPICS62053.2024.10795929&rft.externalDocID=10795929