Research on an Image Recognition Automatic Counting System Based on Improved YOLOv8
This paper proposes a deep learning-based automatic target counting system for industrial environments. The system features enhanced YOLOv8 for small target detection using attention mechanisms and optimized training strategies. It also customizes the DeepSort algorithm for improved robustness in in...
Saved in:
| Published in | IEEE International Conference on Power, Intelligent Computing and Systems (Online) pp. 1417 - 1421 |
|---|---|
| Main Authors | , , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
26.07.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2834-8567 |
| DOI | 10.1109/ICPICS62053.2024.10795929 |
Cover
| Abstract | This paper proposes a deep learning-based automatic target counting system for industrial environments. The system features enhanced YOLOv8 for small target detection using attention mechanisms and optimized training strategies. It also customizes the DeepSort algorithm for improved robustness in industrial multi-object tracking. Utilizing GPU acceleration, the system achieves real-time response within 0.2 seconds. Testing with simulated and real data shows a detection mAP of 88.7%, a tracking MOTA of 91.5%, and a counting accuracy of 96.8%. This system meets industrial requirements for automation, real-time performance, and reliability, offering promising application prospects. |
|---|---|
| AbstractList | This paper proposes a deep learning-based automatic target counting system for industrial environments. The system features enhanced YOLOv8 for small target detection using attention mechanisms and optimized training strategies. It also customizes the DeepSort algorithm for improved robustness in industrial multi-object tracking. Utilizing GPU acceleration, the system achieves real-time response within 0.2 seconds. Testing with simulated and real data shows a detection mAP of 88.7%, a tracking MOTA of 91.5%, and a counting accuracy of 96.8%. This system meets industrial requirements for automation, real-time performance, and reliability, offering promising application prospects. |
| Author | Huang, Wen Chen, Jiaqi Ye, Zhimin Zhao, Jiaxi Zhang, Deyong Liu, Jianyou |
| Author_xml | – sequence: 1 givenname: Jiaqi surname: Chen fullname: Chen, Jiaqi email: 13827248233@163.com organization: Guangdong Technology College,Zhaoqing,China – sequence: 2 givenname: Jiaxi surname: Zhao fullname: Zhao, Jiaxi email: Zhaojx2024@mail.sustech.edu.cn organization: Southern University of Science and Technology,Shenzhen,China – sequence: 3 givenname: Deyong surname: Zhang fullname: Zhang, Deyong email: dengfenglai624@gmail.com organization: Guangdong Technology College,Zhaoqing,China – sequence: 4 givenname: Zhimin surname: Ye fullname: Ye, Zhimin email: dexianyincha0@163.com organization: Guangdong Technology College,Zhaoqing,China – sequence: 5 givenname: Jianyou surname: Liu fullname: Liu, Jianyou email: rghthtyujyt@foxmail.com organization: Guangdong Technology College,Zhaoqing,China – sequence: 6 givenname: Wen surname: Huang fullname: Huang, Wen email: 13005203573@163.com organization: Guangdong Technology College,Zhaoqing,China |
| BookMark | eNo1kNtKw0AYhFdRsNa-gRfrA6T-e969rMFDIFBpe-NV2W7-1BWzKUla6Nvbol7Nx8AMw9ySq9QmJOSBwZQxcI9F_l7kS81BiSkHLqcMjFOOuwsyccZZoUAYKZi6JCNuhcys0uaGTPr-CwAEZ8xYOyLLBfbou_BJ20R9okXjt0gXGNptikM8mbP90DZ-iIHm7T4NMW3p8tgP2NAn32N1zhXNrmsPJ_6Yl_ODvSPXtf_ucfKnY7J6eV7lb1k5fy3yWZlFx4ZMqMpraQQYU5uANau810biRpzRVtowLSHY2vnTWAm12nApQ4CNch61FmNy_1sbEXG962Lju-P6_wbxA-tbU_Y |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICPICS62053.2024.10795929 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings Accès UT - IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350374315 |
| EISSN | 2834-8567 |
| EndPage | 1421 |
| ExternalDocumentID | 10795929 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i91t-35da6473077f7cef1daa674eb3f1da8d671640c8f9a21140f5b244cc0b59ae663 |
| IEDL.DBID | RIE |
| IngestDate | Wed Jan 01 06:01:57 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i91t-35da6473077f7cef1daa674eb3f1da8d671640c8f9a21140f5b244cc0b59ae663 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10795929 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-July-26 |
| PublicationDateYYYYMMDD | 2024-07-26 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE International Conference on Power, Intelligent Computing and Systems (Online) |
| PublicationTitleAbbrev | ICPICS |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211788 |
| Score | 1.8807014 |
| Snippet | This paper proposes a deep learning-based automatic target counting system for industrial environments. The system features enhanced YOLOv8 for small target... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1417 |
| SubjectTerms | Accuracy Automatic counting Industrial automation Logistics Object detection Production Real-time systems Robustness Target detection Target tracking Testing Training Warehousing |
| Title | Research on an Image Recognition Automatic Counting System Based on Improved YOLOv8 |
| URI | https://ieeexplore.ieee.org/document/10795929 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9uD-KTihO_ieBra5elSfuoxbGJbMNNmE8jnyBiO6T1wb_eS9pOFATfjkAgXHK9-13v7ofQlaIylUyRwAguHYWZAZuLJQRyKtK2nxglfZXvhI2e6P0yXjbN6r4Xxhjji89M6ET_L18XqnKpMrBwx4xN0g7q8ITVzVqbhMoAoAzguW102czRvB5ns3E2ZwTeGQBBQsN2_w8mFe9Ihrto0h6hrh95DatShurz13TGf59xD_W-e_bwbOON9tGWyQ_QvC2sw0WORY7Hb_D5wI9t0RAs3lRl4ae24qxhjcD1EHN8C_5Nu3113gHk5-nD9CPpocXwbpGNgoZGIXhJ-2UwiLVgFAyZc8uVsX0tBOMUQLQTE80cYopUYlMBGqSRjSW4fKUiGafCQEByiLp5kZsjhAFMEnh5g8iqlCoLsSXngjBOpJZay-gY9ZxCVut6UMaq1cXJH-unaMfdi0uVEnaGuuV7Zc7Bx5fywt_tF3aIpsU |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60gnpSseLbFbwmppvNbnLUYGm0tsVWqKeyr4CIiUjiwV_vbB4VBcHbsJCwzO5k5pvMzIfQhaIykkwRxwguLYWZAZsLJARyytNpLzRKVlW-IzZ4pLfzYN40q1e9MMaYqvjMuFas_uXrXJU2VQYWbpmxSbSK1gJKaVC3ay1TKj6AGUB06-i8maR5mcSTJJ4yAjcNoCChbvuGH1wqlSvpb6FRu4m6guTFLQvpqs9f8xn_vctt1P3u2sOTpT_aQSsm20XTtrQO5xkWGU5e4QOCH9qyIVi8Kou8mtuK44Y3AtdjzPE1eDhtn6szDyA_jYfjj7CLZv2bWTxwGiIF5znqFY4faMEomDLnKVcm7WkhGKcAo60YamYxk6fCNBKgQeqlgQSnr5Qng0gYCEn2UCfLM7OPMMBJAnfP91IVUZVCdMm5IIwTqaXW0jtAXauQxVs9KmPR6uLwj_UztDGY3Q8Xw2R0d4Q27RnZxClhx6hTvJfmBDx-IU-rc_4CY0qqEg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Power%2C+Intelligent+Computing+and+Systems+%28Online%29&rft.atitle=Research+on+an+Image+Recognition+Automatic+Counting+System+Based+on+Improved+YOLOv8&rft.au=Chen%2C+Jiaqi&rft.au=Zhao%2C+Jiaxi&rft.au=Zhang%2C+Deyong&rft.au=Ye%2C+Zhimin&rft.date=2024-07-26&rft.pub=IEEE&rft.eissn=2834-8567&rft.spage=1417&rft.epage=1421&rft_id=info:doi/10.1109%2FICPICS62053.2024.10795929&rft.externalDocID=10795929 |