A review on PCOS syndrome prediction using AI/ML Computation Technology
The new automated detection system for Polycystic Ovary Syndrome (PCOS) diagnosis is the subject of the current invention. Among females that are able to procreate, PCOS is a same endocrine condition marked by irregular menstruation, hormonal imbalance, and cystic ovaries. Preemptive identification...
Saved in:
| Published in | 2024 Second International Conference on Advances in Information Technology (ICAIT) Vol. 1; pp. 1 - 8 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
24.07.2024
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/ICAIT61638.2024.10690536 |
Cover
| Abstract | The new automated detection system for Polycystic Ovary Syndrome (PCOS) diagnosis is the subject of the current invention. Among females that are able to procreate, PCOS is a same endocrine condition marked by irregular menstruation, hormonal imbalance, and cystic ovaries. Preemptive identification and timely innovation are pivotal for effective management and preventing associated complications such as infertility, diabetes, and cardiovascular diseases. The proposed system employs advanced machine learning algorithms and image processing techniques to analyze medical imaging data, including ultrasound scans of ovaries and clinical data such as hormonal profiles and menstrual history. The system utilizes a multimodal approach to integrate various data sources, extracting relevant features indicative of PCOS presence. |
|---|---|
| AbstractList | The new automated detection system for Polycystic Ovary Syndrome (PCOS) diagnosis is the subject of the current invention. Among females that are able to procreate, PCOS is a same endocrine condition marked by irregular menstruation, hormonal imbalance, and cystic ovaries. Preemptive identification and timely innovation are pivotal for effective management and preventing associated complications such as infertility, diabetes, and cardiovascular diseases. The proposed system employs advanced machine learning algorithms and image processing techniques to analyze medical imaging data, including ultrasound scans of ovaries and clinical data such as hormonal profiles and menstrual history. The system utilizes a multimodal approach to integrate various data sources, extracting relevant features indicative of PCOS presence. |
| Author | CS, Mrs. Pallavi S, Soumya |
| Author_xml | – sequence: 1 givenname: Mrs. Pallavi orcidid: 0009-0006-0300-1676 surname: CS fullname: CS, Mrs. Pallavi email: pallavisadananda@gmail.com organization: Srinivas University,Mangalore,Karnataka,India,574146 – sequence: 2 givenname: Soumya orcidid: 0000-0002-5431-1977 surname: S fullname: S, Soumya email: pksoumyaa@gmail.com organization: Institute of Computer and Information, Srinivas University,Mangalore,Karnataka,India,574146 |
| BookMark | eNo1j8tKw0AYhUfQhda-gYt5gaRzSeayDEFrIFKh2Zdk_j91oJkJaark7S1eVgfOB4fvPJDbEAMSQjlLOWd2U5VF1SiupEkFE1nKmbIsl-qGrK22RuZMGmmUvifbgk746fGLxkDfy92enpcAUxyQjhOCd7O_gsvZhyMtqs1bTcs4jJe5_ekbdB8hnuJxeSR3fXs64_ovV2T_8tyUr0m9215t6sRbPicCtQJjW-bAWd1bzgGY0ygUcEThRA-QdWC50FLmHUhQKlfGAUjHsk6uyNPvqkfEwzj5oZ2Ww_87-Q0yHkp9 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICAIT61638.2024.10690536 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350383867 |
| EndPage | 8 |
| ExternalDocumentID | 10690536 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i91t-2e76d89a0cdc97f911dd0c7e26d1ee2c2fdd4bd9127335bd3d66568cdd3c04b3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Oct 09 06:12:55 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i91t-2e76d89a0cdc97f911dd0c7e26d1ee2c2fdd4bd9127335bd3d66568cdd3c04b3 |
| ORCID | 0000-0002-5431-1977 0009-0006-0300-1676 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_10690536 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-July-24 |
| PublicationDateYYYYMMDD | 2024-07-24 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 Second International Conference on Advances in Information Technology (ICAIT) |
| PublicationTitleAbbrev | ICAIT |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8802674 |
| Snippet | The new automated detection system for Polycystic Ovary Syndrome (PCOS) diagnosis is the subject of the current invention. Among females that are able to... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Biomedical imaging cardiovascular diseases and medical imaging data Diabetes Feature extraction Machine learning algorithms Polycystic Ovary Syndrome (PCOS) Reviews Soft sensors System performance Technological innovation Testing Ultrasonic imaging |
| Title | A review on PCOS syndrome prediction using AI/ML Computation Technology |
| URI | https://ieeexplore.ieee.org/document/10690536 |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qVnyTg9dsd5NsdnMsxdoVWwut0FtpMrMiwraU7aW_3mS3a1EQvIUQyGNI5pvJfDOEPKSxA7VcWKYQOJNGp2yZoGJOVyEmocqV9Q790VgN3-TzPJ7vyeoVFwYRq-AzDHyz-suHld16V5m74c6Wi4VqkVaSqpqs1UTnhLqb9XvZTHmA4ew-LoNm-I_CKZXeGJyQcTNjHS7yGWxLE9jdr2SM_17SKekcKHp08q18zsgRFufkqUdrKgpdFXTSf53SJiEBXW_8j4yXAvWh7u-0l3VHL7Qu6lBJhx687B0yHTzO-kO2r5TAPnRUMo6JglQvQwtWJ7l7vwBCmyBX4E6cW54DSAM6clhFxAYEKAfjUgsgbCiNuCDtYlXgJaEKlIlQSx6Cs7wMmFwAN1pbB1OAA1yRjj-DxbpOhbFotn_9R_8NOfai8M5QLm9Ju9xs8c5p8dLcV9L7ArcPngQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA4-DnpSseLbHLxmu02y2c2xFGtX21pohd5Kk5kVEbalbC_-epPdrkVB8BYCIY8hmW8m880Qcp9EDtRyYZlC4EwanbB5jIo5XYUYhypT1jv0B0PVe5VP02i6IauXXBhELIPPMPDN8i8fFnbtXWXuhjtbLhJql-xHUsqoomvV8TmhbqaddjpRHmI4y4_LoB7wo3RKqTm6R2RYz1kFjHwE68IE9vNXOsZ_L-qYNLYkPTr6Vj8nZAfzU_LYphUZhS5yOuq8jGmdkoAuV_5PxsuB-mD3N9pOm4M-rco6lPKhWz97g4y7D5NOj21qJbB33SoYx1hBouehBavjzL1gAKGNkStwZ84tzwCkAd1yaEVEBgQoB-QSCyBsKI04I3v5IsdzQhUo00IteQjO9jJgMgHcaG0dUAEOcEEa_gxmyyoZxqze_uUf_XfkoDcZ9Gf9dPh8RQ69WLxrlMtrsles1njjdHphbktJfgEtQ6FR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+Second+International+Conference+on+Advances+in+Information+Technology+%28ICAIT%29&rft.atitle=A+review+on+PCOS+syndrome+prediction+using+AI%2FML+Computation+Technology&rft.au=CS%2C+Mrs.+Pallavi&rft.au=S%2C+Soumya&rft.date=2024-07-24&rft.pub=IEEE&rft.volume=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FICAIT61638.2024.10690536&rft.externalDocID=10690536 |