A review on PCOS syndrome prediction using AI/ML Computation Technology

The new automated detection system for Polycystic Ovary Syndrome (PCOS) diagnosis is the subject of the current invention. Among females that are able to procreate, PCOS is a same endocrine condition marked by irregular menstruation, hormonal imbalance, and cystic ovaries. Preemptive identification...

Full description

Saved in:
Bibliographic Details
Published in2024 Second International Conference on Advances in Information Technology (ICAIT) Vol. 1; pp. 1 - 8
Main Authors CS, Mrs. Pallavi, S, Soumya
Format Conference Proceeding
LanguageEnglish
Published IEEE 24.07.2024
Subjects
Online AccessGet full text
DOI10.1109/ICAIT61638.2024.10690536

Cover

Abstract The new automated detection system for Polycystic Ovary Syndrome (PCOS) diagnosis is the subject of the current invention. Among females that are able to procreate, PCOS is a same endocrine condition marked by irregular menstruation, hormonal imbalance, and cystic ovaries. Preemptive identification and timely innovation are pivotal for effective management and preventing associated complications such as infertility, diabetes, and cardiovascular diseases. The proposed system employs advanced machine learning algorithms and image processing techniques to analyze medical imaging data, including ultrasound scans of ovaries and clinical data such as hormonal profiles and menstrual history. The system utilizes a multimodal approach to integrate various data sources, extracting relevant features indicative of PCOS presence.
AbstractList The new automated detection system for Polycystic Ovary Syndrome (PCOS) diagnosis is the subject of the current invention. Among females that are able to procreate, PCOS is a same endocrine condition marked by irregular menstruation, hormonal imbalance, and cystic ovaries. Preemptive identification and timely innovation are pivotal for effective management and preventing associated complications such as infertility, diabetes, and cardiovascular diseases. The proposed system employs advanced machine learning algorithms and image processing techniques to analyze medical imaging data, including ultrasound scans of ovaries and clinical data such as hormonal profiles and menstrual history. The system utilizes a multimodal approach to integrate various data sources, extracting relevant features indicative of PCOS presence.
Author CS, Mrs. Pallavi
S, Soumya
Author_xml – sequence: 1
  givenname: Mrs. Pallavi
  orcidid: 0009-0006-0300-1676
  surname: CS
  fullname: CS, Mrs. Pallavi
  email: pallavisadananda@gmail.com
  organization: Srinivas University,Mangalore,Karnataka,India,574146
– sequence: 2
  givenname: Soumya
  orcidid: 0000-0002-5431-1977
  surname: S
  fullname: S, Soumya
  email: pksoumyaa@gmail.com
  organization: Institute of Computer and Information, Srinivas University,Mangalore,Karnataka,India,574146
BookMark eNo1j8tKw0AYhUfQhda-gYt5gaRzSeayDEFrIFKh2Zdk_j91oJkJaark7S1eVgfOB4fvPJDbEAMSQjlLOWd2U5VF1SiupEkFE1nKmbIsl-qGrK22RuZMGmmUvifbgk746fGLxkDfy92enpcAUxyQjhOCd7O_gsvZhyMtqs1bTcs4jJe5_ekbdB8hnuJxeSR3fXs64_ovV2T_8tyUr0m9215t6sRbPicCtQJjW-bAWd1bzgGY0ygUcEThRA-QdWC50FLmHUhQKlfGAUjHsk6uyNPvqkfEwzj5oZ2Ww_87-Q0yHkp9
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICAIT61638.2024.10690536
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350383867
EndPage 8
ExternalDocumentID 10690536
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-2e76d89a0cdc97f911dd0c7e26d1ee2c2fdd4bd9127335bd3d66568cdd3c04b3
IEDL.DBID RIE
IngestDate Wed Oct 09 06:12:55 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-2e76d89a0cdc97f911dd0c7e26d1ee2c2fdd4bd9127335bd3d66568cdd3c04b3
ORCID 0000-0002-5431-1977
0009-0006-0300-1676
PageCount 8
ParticipantIDs ieee_primary_10690536
PublicationCentury 2000
PublicationDate 2024-July-24
PublicationDateYYYYMMDD 2024-07-24
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-24
  day: 24
PublicationDecade 2020
PublicationTitle 2024 Second International Conference on Advances in Information Technology (ICAIT)
PublicationTitleAbbrev ICAIT
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8802674
Snippet The new automated detection system for Polycystic Ovary Syndrome (PCOS) diagnosis is the subject of the current invention. Among females that are able to...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Biomedical imaging
cardiovascular diseases and medical imaging data
Diabetes
Feature extraction
Machine learning algorithms
Polycystic Ovary Syndrome (PCOS)
Reviews
Soft sensors
System performance
Technological innovation
Testing
Ultrasonic imaging
Title A review on PCOS syndrome prediction using AI/ML Computation Technology
URI https://ieeexplore.ieee.org/document/10690536
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qVnyTg9dsd5NsdnMsxdoVWwut0FtpMrMiwraU7aW_3mS3a1EQvIUQyGNI5pvJfDOEPKSxA7VcWKYQOJNGp2yZoGJOVyEmocqV9Q790VgN3-TzPJ7vyeoVFwYRq-AzDHyz-suHld16V5m74c6Wi4VqkVaSqpqs1UTnhLqb9XvZTHmA4ew-LoNm-I_CKZXeGJyQcTNjHS7yGWxLE9jdr2SM_17SKekcKHp08q18zsgRFufkqUdrKgpdFXTSf53SJiEBXW_8j4yXAvWh7u-0l3VHL7Qu6lBJhx687B0yHTzO-kO2r5TAPnRUMo6JglQvQwtWJ7l7vwBCmyBX4E6cW54DSAM6clhFxAYEKAfjUgsgbCiNuCDtYlXgJaEKlIlQSx6Cs7wMmFwAN1pbB1OAA1yRjj-DxbpOhbFotn_9R_8NOfai8M5QLm9Ju9xs8c5p8dLcV9L7ArcPngQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA4-DnpSseLbHLxmu02y2c2xFGtX21pohd5Kk5kVEbalbC_-epPdrkVB8BYCIY8hmW8m880Qcp9EDtRyYZlC4EwanbB5jIo5XYUYhypT1jv0B0PVe5VP02i6IauXXBhELIPPMPDN8i8fFnbtXWXuhjtbLhJql-xHUsqoomvV8TmhbqaddjpRHmI4y4_LoB7wo3RKqTm6R2RYz1kFjHwE68IE9vNXOsZ_L-qYNLYkPTr6Vj8nZAfzU_LYphUZhS5yOuq8jGmdkoAuV_5PxsuB-mD3N9pOm4M-rco6lPKhWz97g4y7D5NOj21qJbB33SoYx1hBouehBavjzL1gAKGNkStwZ84tzwCkAd1yaEVEBgQoB-QSCyBsKI04I3v5IsdzQhUo00IteQjO9jJgMgHcaG0dUAEOcEEa_gxmyyoZxqze_uUf_XfkoDcZ9Gf9dPh8RQ69WLxrlMtrsles1njjdHphbktJfgEtQ6FR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+Second+International+Conference+on+Advances+in+Information+Technology+%28ICAIT%29&rft.atitle=A+review+on+PCOS+syndrome+prediction+using+AI%2FML+Computation+Technology&rft.au=CS%2C+Mrs.+Pallavi&rft.au=S%2C+Soumya&rft.date=2024-07-24&rft.pub=IEEE&rft.volume=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FICAIT61638.2024.10690536&rft.externalDocID=10690536