Set up a digital-twin diagnostic model with deep learning

This paper addresses the resource-intensive nature of traditional intelligent fault diagnosis by proposing a computationally efficient yet highly effective digital twin diagnostic model. We transform time-series fault data into 2D image-like representations, known as Gramian Angular Fields (GAF), an...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE 4th International Conference on Digital Twins and Parallel Intelligence (DTPI) pp. 27 - 31
Main Authors Liu, Yijiao, Huo, Mingying, He, Long, Li, Ming, Xue, Yufeng, Qi, Naiming
Format Conference Proceeding
LanguageEnglish
Published IEEE 18.10.2024
Subjects
Online AccessGet full text
DOI10.1109/DTPI61353.2024.10778897

Cover

Abstract This paper addresses the resource-intensive nature of traditional intelligent fault diagnosis by proposing a computationally efficient yet highly effective digital twin diagnostic model. We transform time-series fault data into 2D image-like representations, known as Gramian Angular Fields (GAF), and then integrate octave convolution into the ResNet50 architecture to extract robust features from machine data. By leveraging the lower complexity of octave convolution, our approach significantly enhances diagnostic efficiency. Experimental results demonstrate that our method achieves over 95% accuracy while reducing computational costs by 42%. And this algorithm can be used for lightweight and efficient fault diagnosis.
AbstractList This paper addresses the resource-intensive nature of traditional intelligent fault diagnosis by proposing a computationally efficient yet highly effective digital twin diagnostic model. We transform time-series fault data into 2D image-like representations, known as Gramian Angular Fields (GAF), and then integrate octave convolution into the ResNet50 architecture to extract robust features from machine data. By leveraging the lower complexity of octave convolution, our approach significantly enhances diagnostic efficiency. Experimental results demonstrate that our method achieves over 95% accuracy while reducing computational costs by 42%. And this algorithm can be used for lightweight and efficient fault diagnosis.
Author Xue, Yufeng
Li, Ming
He, Long
Qi, Naiming
Liu, Yijiao
Huo, Mingying
Author_xml – sequence: 1
  givenname: Yijiao
  surname: Liu
  fullname: Liu, Yijiao
  email: hiterlyj@gmail.com
  organization: Harbin Institute of Technology,School of Astronautics,Harbin,China
– sequence: 2
  givenname: Mingying
  surname: Huo
  fullname: Huo, Mingying
  email: huomingying@hit.edu.cn
  organization: Harbin Institute of Technology,School of Astronautics,Harbin,China
– sequence: 3
  givenname: Long
  surname: He
  fullname: He, Long
  email: longhe_beihangers@163.com
  organization: Beijing Xinghang Electromechanical Equipment Co. Ltd.,Beijing,China
– sequence: 4
  givenname: Ming
  surname: Li
  fullname: Li, Ming
  email: 22B918087@stu.hit.edu.cn
  organization: Harbin Institute of Technology,School of Astronautics,Harbin,China
– sequence: 5
  givenname: Yufeng
  surname: Xue
  fullname: Xue, Yufeng
  email: xyfzsh_hit@163.com
  organization: Harbin Institute of Technology,School of Astronautics,Harbin,China
– sequence: 6
  givenname: Naiming
  surname: Qi
  fullname: Qi, Naiming
  email: qinm@hit.edu.cn
  organization: Harbin Institute of Technology,School of Astronautics,Harbin,China
BookMark eNo1j11LwzAUhiPohc79A8H8gdaTnKbJuZT5NRgo2PuRNmc10KWliwz_vQPd1csDDw-8N-IyjYmFuFdQKgX08NR8rGuFBksNuioVWOsc2QuxJEsODWBF2uhrQZ-c5fckvQyxj9kPRT7GdALfp_GQYyf3Y-BBHmP-koF5kgP7OcXU34qrnR8OvPzfhWhenpvVW7F5f12vHjdFJJULZSBg0NACd1wTY0Bqu2A6YzvWBCbsLDjgCrGutFZkoXItkFeW_EnAhbj7y0Zm3k5z3Pv5Z3s-hL-leER1
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DTPI61353.2024.10778897
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350349252
EndPage 31
ExternalDocumentID 10778897
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-150d3d20b0ece69e3d39bcd5c57ce2905df7080e4336422197048b09a179ae293
IEDL.DBID RIE
IngestDate Wed Aug 27 02:35:13 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-150d3d20b0ece69e3d39bcd5c57ce2905df7080e4336422197048b09a179ae293
PageCount 5
ParticipantIDs ieee_primary_10778897
PublicationCentury 2000
PublicationDate 2024-Oct.-18
PublicationDateYYYYMMDD 2024-10-18
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-18
  day: 18
PublicationDecade 2020
PublicationTitle 2024 IEEE 4th International Conference on Digital Twins and Parallel Intelligence (DTPI)
PublicationTitleAbbrev DTPI
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8913914
Snippet This paper addresses the resource-intensive nature of traditional intelligent fault diagnosis by proposing a computationally efficient yet highly effective...
SourceID ieee
SourceType Publisher
StartPage 27
SubjectTerms Adaptation models
Computational efficiency
Computational modeling
Convolution
Convolutional neural networks
Data mining
Deep Learning(DL)
Digital twins
Digital-twin diagnostic model
Fault diagnosis
Feature extraction
Image coding
Title Set up a digital-twin diagnostic model with deep learning
URI https://ieeexplore.ieee.org/document/10778897
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qVnyTg9esu5tXc1ZL9VAKrtBbySazpQjbIrsI_non2a2iIHhLQiDPycwk3-Qj5MaZvOJcewZjWTFRKseszQQzFtDdUKnnPgJkZ2r6Ip4WctEHq8dYGACI4DNIQjK-5fuNa8NVGUq4Ro_N6AEZ4D7rgrV6zFaWmtv7Yv6oAo8Dun25SHa1f_CmRLUxOSCzXYMdWuQ1aZsycR-__mL8d48Oyeg7Qo_Ov3TPEdmD-piYZ2hou6WW-vUqkIGw5n1dYyai6XCH0Mh7Q8PdK_UAW9pzRqxGpJg8FHdT1lMjsLXJGoZWHE5inpYpOFAGuOemdF46qR3kJpW-0mgKguAc_Qs8lDQKapkai-KHi2D4CRnWmxpOCUV1jSaF51ZDLrzgdgw2qzKrpBZGKHlGRmHYy233-cVyN-LzP8ovyH6Y_XC8Z-NLMmzeWrhCvd2U13G9PgHVNZfT
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D3pSceJvc_Ca2jZJ05zVsekcAyvsNtLkVYawDWkR_Ot9yTpFQfDWlkKavry89yXfy0fIldVpxblyDHJZMVFmlhmTCKYNINzIYsddIMiOsv6zuJ_ISVusHmphACCQzyDyl2Ev3y1s45fK0MMVIjatNsmWRFiRr8q1WtZWEuvr22I8yLySAwK_VETr938op4TA0dslo3WTK77Ia9TUZWQ_fp3G-O9v2iPd7xo9Ov6KPvtkA-YHRD9BTZslNdTNXrwcCKvfZ3O8CXw6HCM0KN9Qv_pKHcCStqoRL11S9O6Kmz5rxRHYTCc1wzwOf2MalzFYyDRwx3VpnbRSWUh1LF2lMBkEwTkiDJyWFLpqGWuDDohm0PyQdOaLORwRigEbkwrHjYJUOMFNDiapEpNJJbTI5DHp-m5Pl6vjL6brHp_88fySbPeLx-F0OBg9nJIdbwk_2Sf5GenUbw2cYxSvy4tgu08Hl5sm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+4th+International+Conference+on+Digital+Twins+and+Parallel+Intelligence+%28DTPI%29&rft.atitle=Set+up+a+digital-twin+diagnostic+model+with+deep+learning&rft.au=Liu%2C+Yijiao&rft.au=Huo%2C+Mingying&rft.au=He%2C+Long&rft.au=Li%2C+Ming&rft.date=2024-10-18&rft.pub=IEEE&rft.spage=27&rft.epage=31&rft_id=info:doi/10.1109%2FDTPI61353.2024.10778897&rft.externalDocID=10778897