Set up a digital-twin diagnostic model with deep learning
This paper addresses the resource-intensive nature of traditional intelligent fault diagnosis by proposing a computationally efficient yet highly effective digital twin diagnostic model. We transform time-series fault data into 2D image-like representations, known as Gramian Angular Fields (GAF), an...
Saved in:
Published in | 2024 IEEE 4th International Conference on Digital Twins and Parallel Intelligence (DTPI) pp. 27 - 31 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
18.10.2024
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/DTPI61353.2024.10778897 |
Cover
Abstract | This paper addresses the resource-intensive nature of traditional intelligent fault diagnosis by proposing a computationally efficient yet highly effective digital twin diagnostic model. We transform time-series fault data into 2D image-like representations, known as Gramian Angular Fields (GAF), and then integrate octave convolution into the ResNet50 architecture to extract robust features from machine data. By leveraging the lower complexity of octave convolution, our approach significantly enhances diagnostic efficiency. Experimental results demonstrate that our method achieves over 95% accuracy while reducing computational costs by 42%. And this algorithm can be used for lightweight and efficient fault diagnosis. |
---|---|
AbstractList | This paper addresses the resource-intensive nature of traditional intelligent fault diagnosis by proposing a computationally efficient yet highly effective digital twin diagnostic model. We transform time-series fault data into 2D image-like representations, known as Gramian Angular Fields (GAF), and then integrate octave convolution into the ResNet50 architecture to extract robust features from machine data. By leveraging the lower complexity of octave convolution, our approach significantly enhances diagnostic efficiency. Experimental results demonstrate that our method achieves over 95% accuracy while reducing computational costs by 42%. And this algorithm can be used for lightweight and efficient fault diagnosis. |
Author | Xue, Yufeng Li, Ming He, Long Qi, Naiming Liu, Yijiao Huo, Mingying |
Author_xml | – sequence: 1 givenname: Yijiao surname: Liu fullname: Liu, Yijiao email: hiterlyj@gmail.com organization: Harbin Institute of Technology,School of Astronautics,Harbin,China – sequence: 2 givenname: Mingying surname: Huo fullname: Huo, Mingying email: huomingying@hit.edu.cn organization: Harbin Institute of Technology,School of Astronautics,Harbin,China – sequence: 3 givenname: Long surname: He fullname: He, Long email: longhe_beihangers@163.com organization: Beijing Xinghang Electromechanical Equipment Co. Ltd.,Beijing,China – sequence: 4 givenname: Ming surname: Li fullname: Li, Ming email: 22B918087@stu.hit.edu.cn organization: Harbin Institute of Technology,School of Astronautics,Harbin,China – sequence: 5 givenname: Yufeng surname: Xue fullname: Xue, Yufeng email: xyfzsh_hit@163.com organization: Harbin Institute of Technology,School of Astronautics,Harbin,China – sequence: 6 givenname: Naiming surname: Qi fullname: Qi, Naiming email: qinm@hit.edu.cn organization: Harbin Institute of Technology,School of Astronautics,Harbin,China |
BookMark | eNo1j11LwzAUhiPohc79A8H8gdaTnKbJuZT5NRgo2PuRNmc10KWliwz_vQPd1csDDw-8N-IyjYmFuFdQKgX08NR8rGuFBksNuioVWOsc2QuxJEsODWBF2uhrQZ-c5fckvQyxj9kPRT7GdALfp_GQYyf3Y-BBHmP-koF5kgP7OcXU34qrnR8OvPzfhWhenpvVW7F5f12vHjdFJJULZSBg0NACd1wTY0Bqu2A6YzvWBCbsLDjgCrGutFZkoXItkFeW_EnAhbj7y0Zm3k5z3Pv5Z3s-hL-leER1 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/DTPI61353.2024.10778897 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350349252 |
EndPage | 31 |
ExternalDocumentID | 10778897 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i91t-150d3d20b0ece69e3d39bcd5c57ce2905df7080e4336422197048b09a179ae293 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:35:13 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i91t-150d3d20b0ece69e3d39bcd5c57ce2905df7080e4336422197048b09a179ae293 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10778897 |
PublicationCentury | 2000 |
PublicationDate | 2024-Oct.-18 |
PublicationDateYYYYMMDD | 2024-10-18 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.-18 day: 18 |
PublicationDecade | 2020 |
PublicationTitle | 2024 IEEE 4th International Conference on Digital Twins and Parallel Intelligence (DTPI) |
PublicationTitleAbbrev | DTPI |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8913914 |
Snippet | This paper addresses the resource-intensive nature of traditional intelligent fault diagnosis by proposing a computationally efficient yet highly effective... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 27 |
SubjectTerms | Adaptation models Computational efficiency Computational modeling Convolution Convolutional neural networks Data mining Deep Learning(DL) Digital twins Digital-twin diagnostic model Fault diagnosis Feature extraction Image coding |
Title | Set up a digital-twin diagnostic model with deep learning |
URI | https://ieeexplore.ieee.org/document/10778897 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qVnyTg9esu5tXc1ZL9VAKrtBbySazpQjbIrsI_non2a2iIHhLQiDPycwk3-Qj5MaZvOJcewZjWTFRKseszQQzFtDdUKnnPgJkZ2r6Ip4WctEHq8dYGACI4DNIQjK-5fuNa8NVGUq4Ro_N6AEZ4D7rgrV6zFaWmtv7Yv6oAo8Dun25SHa1f_CmRLUxOSCzXYMdWuQ1aZsycR-__mL8d48Oyeg7Qo_Ov3TPEdmD-piYZ2hou6WW-vUqkIGw5n1dYyai6XCH0Mh7Q8PdK_UAW9pzRqxGpJg8FHdT1lMjsLXJGoZWHE5inpYpOFAGuOemdF46qR3kJpW-0mgKguAc_Qs8lDQKapkai-KHi2D4CRnWmxpOCUV1jSaF51ZDLrzgdgw2qzKrpBZGKHlGRmHYy233-cVyN-LzP8ovyH6Y_XC8Z-NLMmzeWrhCvd2U13G9PgHVNZfT |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D3pSceJvc_Ca2jZJ05zVsekcAyvsNtLkVYawDWkR_Ot9yTpFQfDWlkKavry89yXfy0fIldVpxblyDHJZMVFmlhmTCKYNINzIYsddIMiOsv6zuJ_ISVusHmphACCQzyDyl2Ev3y1s45fK0MMVIjatNsmWRFiRr8q1WtZWEuvr22I8yLySAwK_VETr938op4TA0dslo3WTK77Ia9TUZWQ_fp3G-O9v2iPd7xo9Ov6KPvtkA-YHRD9BTZslNdTNXrwcCKvfZ3O8CXw6HCM0KN9Qv_pKHcCStqoRL11S9O6Kmz5rxRHYTCc1wzwOf2MalzFYyDRwx3VpnbRSWUh1LF2lMBkEwTkiDJyWFLpqGWuDDohm0PyQdOaLORwRigEbkwrHjYJUOMFNDiapEpNJJbTI5DHp-m5Pl6vjL6brHp_88fySbPeLx-F0OBg9nJIdbwk_2Sf5GenUbw2cYxSvy4tgu08Hl5sm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+4th+International+Conference+on+Digital+Twins+and+Parallel+Intelligence+%28DTPI%29&rft.atitle=Set+up+a+digital-twin+diagnostic+model+with+deep+learning&rft.au=Liu%2C+Yijiao&rft.au=Huo%2C+Mingying&rft.au=He%2C+Long&rft.au=Li%2C+Ming&rft.date=2024-10-18&rft.pub=IEEE&rft.spage=27&rft.epage=31&rft_id=info:doi/10.1109%2FDTPI61353.2024.10778897&rft.externalDocID=10778897 |