Highly Accurate ECG Beat Classification Based on Continuous Wavelet Transformation and Multiple Support Vector Machine Classifiers

This paper presents a highly accurate ECG beat classification system. It uses continuous wavelet transformation combined with time domain morphology analysis to form three separate feature vectors from each beat. Each of these feature vectors are then used separately to train three different support...

Full description

Saved in:
Bibliographic Details
Published in2009 2nd International Conference on Biomedical Engineering and Informatics pp. 1 - 5
Main Authors Zellmer, E., Fei Shang, Hao Zhang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2009
Subjects
Online AccessGet full text
ISBN9781424441327
1424441323
ISSN1948-2914
DOI10.1109/BMEI.2009.5305280

Cover

Abstract This paper presents a highly accurate ECG beat classification system. It uses continuous wavelet transformation combined with time domain morphology analysis to form three separate feature vectors from each beat. Each of these feature vectors are then used separately to train three different support vector machine (SVM) classifiers. During data classification each of the three classifiers independently classifies each beat; with the result of the multi classifier based classification system being decided by voting among the three independent classifiers. Using this method the multi classifier based system is able to reach an average accuracy of 99.72% in the classification of six types of beats. This accuracy is higher than the individual accuracy of any of the participating SVM classifiers as well as higher than previously presented ECG beat classification systems showing the effectiveness of the technique.
AbstractList This paper presents a highly accurate ECG beat classification system. It uses continuous wavelet transformation combined with time domain morphology analysis to form three separate feature vectors from each beat. Each of these feature vectors are then used separately to train three different support vector machine (SVM) classifiers. During data classification each of the three classifiers independently classifies each beat; with the result of the multi classifier based classification system being decided by voting among the three independent classifiers. Using this method the multi classifier based system is able to reach an average accuracy of 99.72% in the classification of six types of beats. This accuracy is higher than the individual accuracy of any of the participating SVM classifiers as well as higher than previously presented ECG beat classification systems showing the effectiveness of the technique.
Author Zellmer, E.
Fei Shang
Hao Zhang
Author_xml – sequence: 1
  givenname: E.
  surname: Zellmer
  fullname: Zellmer, E.
  organization: Sch. of life Sci. & Technol., Beijing Inst. of Technol., Beijing, China
– sequence: 2
  surname: Fei Shang
  fullname: Fei Shang
  organization: Sch. of life Sci. & Technol., Beijing Inst. of Technol., Beijing, China
– sequence: 3
  surname: Hao Zhang
  fullname: Hao Zhang
  organization: Sch. of life Sci. & Technol., Beijing Inst. of Technol., Beijing, China
BookMark eNo9kM1OAkEQhMcIiYA8gPEyLwD2_OzPHGGDQALxIFFvZHbplTHL7GZm1oSrTy4E9NTV9XXXofqkY2uLhDwwGDMG6mm6ni3HHECNIwERT-GG9JnkUkom5MctGaok_dt50iE9pmQ64orJLumf_xScgLojQ--_AICpWPFE9MjPwnzuqyOdFEXrdEA6y-Z0ijrQrNLem9IUOpja0qn2uKMnkdU2GNvWrafv-hsrDHTjtPVl7Q6XU213dN1WwTQV0te2aWoX6BsWoXZ0rYu9sfifjs7fk26pK4_D6xyQzfNsky1Gq5f5MpusRkZBGJVKyFiUQudQxqnKU8bzPIljPHtpnJ9JGgmOAFzrCBIm1KmOXLKiQJbsxIA8XmINIm4bZw7aHbfXOsUv5Zpn8Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BMEI.2009.5305280
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 142444134X
9781424441341
EndPage 5
ExternalDocumentID 5305280
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-f93463f3ab0f689b812bb766e3f3a86bf3ab8532e002aa507139444b41cce17d3
IEDL.DBID RIE
ISBN 9781424441327
1424441323
ISSN 1948-2914
IngestDate Wed Aug 27 02:26:44 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2009901329
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-f93463f3ab0f689b812bb766e3f3a86bf3ab8532e002aa507139444b41cce17d3
PageCount 5
ParticipantIDs ieee_primary_5305280
PublicationCentury 2000
PublicationDate 2009-Oct.
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: 2009-Oct.
PublicationDecade 2000
PublicationTitle 2009 2nd International Conference on Biomedical Engineering and Informatics
PublicationTitleAbbrev BMEI
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001969273
ssj0000452971
Score 1.4905155
Snippet This paper presents a highly accurate ECG beat classification system. It uses continuous wavelet transformation combined with time domain morphology analysis...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Continuous wavelet transforms
Electrocardiography
Feature extraction
Morphology
Patient monitoring
Support vector machine classification
Support vector machines
Time domain analysis
Wavelet analysis
Wavelet domain
Title Highly Accurate ECG Beat Classification Based on Continuous Wavelet Transformation and Multiple Support Vector Machine Classifiers
URI https://ieeexplore.ieee.org/document/5305280
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZKJ1g4WsQtD4ykTeLUjkdatRxSEEOBbpWvSAWUIkgGGPnlPDtuKYiBJXKcKIdt-X32-973EDpl2shcEBqA6YuDREQi4IrAgeeMG6UZd3nIsht6eZdcT3qTBjpbxsIYYxz5zHRs0fny9VxVdqus24PBGaewQF9jKa1jtZb7KVYanHto8-hlX2LnYIZlug00cBmeXFwXzNsxWcg9-XPmPZ5RyLv9bHhVK1n6F_7IvOIMz2gTZYtPrvkmT52qlB318UvN8b__tIXa3yF--HZpvLZRwxQ7aGNFnbCFPi0H5PkdnytVWUEJPBxc4D7M3dhl0rQcI9etuA-WUGMoWKmrWVHNqzf8IGxGixKPV4Ax3CEKjTPPYcQ2oyigf3zvPAc4c7xOs3w6ANM2Go-G48Fl4FM2BDMelkHOSUJJToQMc5pyCehBSkapsXUplfYK4IPYwDwshIWiNi43kUmklImYJruoWcwLs4cwMdBjITVhzlSiEyYjBVBWRyqWgPlYbx-1bGNOX2pRjqlvx4O_qw_RunMDORbeEWqWr5U5BjRRyhM3jL4AzUfDLw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMgALjxbxxgMjafNw4nqkVUsLTcUQoFtlO45UQCmCZICRX87ZSUNBDCyR40R52Jbvs--77xA6p7ESCfcCC0yfaxHucItJDw4soUzJmDKThyycBMM7cj31pzV0UcXCKKUM-Uy1dNH48uOFzPVWWduHwel2YIG-5hNC_CJaq9pR0eLgrAQ3j6Xwi2tczLBQ16EGJseTieyCmdv1loJP5TktfZ6OzdrdsD8qtCzLV_7IvWJMz2ALhcuPLhgnT608Ey358UvP8b9_tY2a30F--LYyXzuoptJdtLmiT9hAn5oF8vyOL6XMtaQE7veucBdmb2xyaWqWkelY3AVbGGMoaLGreZov8jf8wHVOiwxHK9AY7uBpjMOSxYh1TlHA__je-A5waJidqno6QNMmigb9qDe0yqQN1pzZmZUwjwRe4nFhJ0GHCcAPQtAgULquEwh9BRCCq2Am5lyDUR2ZSwRxpFQOjb09VE8XqdpH2FPQY3ag7IRKEhMqHAlgNnakKwD1Uf8ANXRjzl4KWY5Z2Y6Hf1efofVhFI5n49Hk5ghtGKeQ4eQdo3r2mqsTwBaZODVD6gs3yMZ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+2nd+International+Conference+on+Biomedical+Engineering+and+Informatics&rft.atitle=Highly+Accurate+ECG+Beat+Classification+Based+on+Continuous+Wavelet+Transformation+and+Multiple+Support+Vector+Machine+Classifiers&rft.au=Zellmer%2C+E.&rft.au=Fei+Shang&rft.au=Hao+Zhang&rft.date=2009-10-01&rft.pub=IEEE&rft.isbn=9781424441327&rft.issn=1948-2914&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FBMEI.2009.5305280&rft.externalDocID=5305280
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-2914&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-2914&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-2914&client=summon