A fuzzy C-means based algorithm for bias field estimation and segmentation of MR images

This paper proposes a novel algorithm for simultaneous estimation of the bias field and segmentation of tissues for magnetic resonance images. The algorithm formulated by modifying the objective function in the fuzzy C-means algorithm to include a bias field which is modeled as a linear combination...

Full description

Saved in:
Bibliographic Details
Published in2010 International Conference on Apperceiving Computing and Intelligence Analysis pp. 307 - 310
Main Authors Bei Yan, Mei Xie, Jing-Jing Gao, Wei Zhao
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2010
Subjects
Online AccessGet full text
ISBN9781424480258
1424480256
DOI10.1109/ICACIA.2010.5709907

Cover

Abstract This paper proposes a novel algorithm for simultaneous estimation of the bias field and segmentation of tissues for magnetic resonance images. The algorithm formulated by modifying the objective function in the fuzzy C-means algorithm to include a bias field which is modeled as a linear combination of a set of basis functions. Bias field estimation and image segmentation are simultaneously achieved as the result of minimizing this modified fuzzy C-means objective function. The iterative algorithm for objective function minimization we provide converges to the optimal solution at a fast rate. The outstanding advantages of our method are that its result is independent from initialization, which allows robust and fully automated application and the superior performance compared with other methods. The proposed method has been successfully applied to 3-Tesla MR images and got desirable results.
AbstractList This paper proposes a novel algorithm for simultaneous estimation of the bias field and segmentation of tissues for magnetic resonance images. The algorithm formulated by modifying the objective function in the fuzzy C-means algorithm to include a bias field which is modeled as a linear combination of a set of basis functions. Bias field estimation and image segmentation are simultaneously achieved as the result of minimizing this modified fuzzy C-means objective function. The iterative algorithm for objective function minimization we provide converges to the optimal solution at a fast rate. The outstanding advantages of our method are that its result is independent from initialization, which allows robust and fully automated application and the superior performance compared with other methods. The proposed method has been successfully applied to 3-Tesla MR images and got desirable results.
Author Bei Yan
Jing-Jing Gao
Wei Zhao
Mei Xie
Author_xml – sequence: 1
  surname: Bei Yan
  fullname: Bei Yan
  email: beibei_box@hotmail.com
  organization: Image Process. & Inf. Security Lab., UESTC, Chengdu, China
– sequence: 2
  surname: Mei Xie
  fullname: Mei Xie
  organization: Image Process. & Inf. Security Lab., UESTC, Chengdu, China
– sequence: 3
  surname: Jing-Jing Gao
  fullname: Jing-Jing Gao
  organization: Image Process. & Inf. Security Lab., UESTC, Chengdu, China
– sequence: 4
  surname: Wei Zhao
  fullname: Wei Zhao
  organization: Image Process. & Inf. Security Lab., UESTC, Chengdu, China
BookMark eNo1kFFLwzAQxyMq6GY_wV7yBTqTa5omj6WoG0wEGfg40vZSI20qTX3YPr2RzXs5_r-Dux-3IDd-9EjIirM150w_bquy2pZrYBHkBdOaFVdkwQUIoRhIcU0SXaj_nKs7koTwxWLlUER2Tz5Kan9OpyOt0gGND7Q2AVtq-m6c3Pw5UDtOtHYmUOuwbymG2Q1mdqOnxrc0YDegn89gtPT1ncZxh-GB3FrTB0wufUn2z0_7apPu3l6i9S51ms2plbWFHP78tMKCa5M1TJkmyoHkQgA0UtSyYSImjgYMQ4DMSl7bliubLcnqvNYh4uF7isen4-HyiuwXe79TTQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICACIA.2010.5709907
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès UT - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1424480264
9781424480241
1424480248
9781424480265
EndPage 310
ExternalDocumentID 5709907
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-f6bf252424498e719a3c08ac2742614422c64b6c046141ea2a0e223f61bfd18f3
IEDL.DBID RIE
ISBN 9781424480258
1424480256
IngestDate Wed Aug 27 03:25:06 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-f6bf252424498e719a3c08ac2742614422c64b6c046141ea2a0e223f61bfd18f3
PageCount 4
ParticipantIDs ieee_primary_5709907
PublicationCentury 2000
PublicationDate 2010-Dec.
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-Dec.
PublicationDecade 2010
PublicationTitle 2010 International Conference on Apperceiving Computing and Intelligence Analysis
PublicationTitleAbbrev ICACIA
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000527448
Score 1.465359
Snippet This paper proposes a novel algorithm for simultaneous estimation of the bias field and segmentation of tissues for magnetic resonance images. The algorithm...
SourceID ieee
SourceType Publisher
StartPage 307
SubjectTerms bias field
Convergence
Estimation
fuzzy C-means
Image segmentation
Magnetic resonance
magnetic resonance image
Nonhomogeneous media
Pixel
Robustness
Title A fuzzy C-means based algorithm for bias field estimation and segmentation of MR images
URI https://ieeexplore.ieee.org/document/5709907
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA7bTp5UNvGb9-DRzn6m6XEUxyZMRCbuNpL0zRy6dmztwf16k7arKB68JSmUkBfyvF_PE0JuQgw8HnFtgRCZ5ScOs4RMlMU87lHtkNsJN6mBySMdvfgPs2DWIrcNFwYRy-Yz7JthWctPMlmYVJkO3k0ZJ2yTdshoxdVq8il2YLTu2J67xQyW7yWd6jmrVYccO7obx4N4PKhau-rf_nhfpYSX4SGZ7DdWdZW894tc9OXul2bjf3d-RHrfRD54aiDqmLQw7ZLXAahit_uE2FqhRiowSJYA_1hkm2X-tgLtx4JY8i2U7W1gdDgqgiPwNIEtLlY1YSmFTMHkGfTnBW57ZDq8n8Yjq35fwVpGdm4pKpQbGHqIHzEMnYh70mZcmuKtCRNdV1JfUGkk2X0Huctt1M6Eoo5Q2qbKOyGdNEvxlICeRKFyKacofUdxoaM2RwlUobkiFD8jXXMm83WloDGvj-P87-ULcuA2TSOXpJNvCrzS0J-L69LmX7AVqXc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4UD3pSA8Zve_DocB9d1x3JIgFlxBiM3EjbvUWibAa2g_x6221gNB68tV2yNH2TPu_X8xSh6wB8j4dcWyAAZpHEYZaQibKYxz2qHXI74SY1EA9p75ncj_3xFrrZcGEAoGw-g7YZlrX8JJOFSZXp4N2UcYJttOMTQvyKrbXJqNi-Ubtja_YWM2i-FnWq56zWHXLs8LYfdaJ-p2ruqn_844WVEmC6-yheb63qK3lrF7loy9Uv1cb_7v0Atb6pfPhxA1KHaAvSJnrpYFWsVp84suagsQobLEswf59mi1n-Osfak8Vixpe4bHDDRomjojhiniZ4CdN5TVlKcaZw_IT15yksW2jUvRtFPat-YcGahXZuKSqU6xuCCAkZBE7IPWkzLk351gSKrispEVQaUXbiAHe5DdqdUNQRSltVeUeokWYpHCOsJ2GgXMopSOIoLnTc5igBKjCXhOInqGnOZPJRaWhM6uM4_Xv5Cu32RvFgMugPH87QnrtpITlHjXxRwIV2BHJxWdr_C8WjrMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+International+Conference+on+Apperceiving+Computing+and+Intelligence+Analysis&rft.atitle=A+fuzzy+C-means+based+algorithm+for+bias+field+estimation+and+segmentation+of+MR+images&rft.au=Bei+Yan&rft.au=Mei+Xie&rft.au=Jing-Jing+Gao&rft.au=Wei+Zhao&rft.date=2010-12-01&rft.pub=IEEE&rft.isbn=9781424480258&rft.spage=307&rft.epage=310&rft_id=info:doi/10.1109%2FICACIA.2010.5709907&rft.externalDocID=5709907
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424480258/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424480258/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424480258/sc.gif&client=summon&freeimage=true