A fuzzy C-means based algorithm for bias field estimation and segmentation of MR images
This paper proposes a novel algorithm for simultaneous estimation of the bias field and segmentation of tissues for magnetic resonance images. The algorithm formulated by modifying the objective function in the fuzzy C-means algorithm to include a bias field which is modeled as a linear combination...
Saved in:
| Published in | 2010 International Conference on Apperceiving Computing and Intelligence Analysis pp. 307 - 310 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.12.2010
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 9781424480258 1424480256 |
| DOI | 10.1109/ICACIA.2010.5709907 |
Cover
| Abstract | This paper proposes a novel algorithm for simultaneous estimation of the bias field and segmentation of tissues for magnetic resonance images. The algorithm formulated by modifying the objective function in the fuzzy C-means algorithm to include a bias field which is modeled as a linear combination of a set of basis functions. Bias field estimation and image segmentation are simultaneously achieved as the result of minimizing this modified fuzzy C-means objective function. The iterative algorithm for objective function minimization we provide converges to the optimal solution at a fast rate. The outstanding advantages of our method are that its result is independent from initialization, which allows robust and fully automated application and the superior performance compared with other methods. The proposed method has been successfully applied to 3-Tesla MR images and got desirable results. |
|---|---|
| AbstractList | This paper proposes a novel algorithm for simultaneous estimation of the bias field and segmentation of tissues for magnetic resonance images. The algorithm formulated by modifying the objective function in the fuzzy C-means algorithm to include a bias field which is modeled as a linear combination of a set of basis functions. Bias field estimation and image segmentation are simultaneously achieved as the result of minimizing this modified fuzzy C-means objective function. The iterative algorithm for objective function minimization we provide converges to the optimal solution at a fast rate. The outstanding advantages of our method are that its result is independent from initialization, which allows robust and fully automated application and the superior performance compared with other methods. The proposed method has been successfully applied to 3-Tesla MR images and got desirable results. |
| Author | Bei Yan Jing-Jing Gao Wei Zhao Mei Xie |
| Author_xml | – sequence: 1 surname: Bei Yan fullname: Bei Yan email: beibei_box@hotmail.com organization: Image Process. & Inf. Security Lab., UESTC, Chengdu, China – sequence: 2 surname: Mei Xie fullname: Mei Xie organization: Image Process. & Inf. Security Lab., UESTC, Chengdu, China – sequence: 3 surname: Jing-Jing Gao fullname: Jing-Jing Gao organization: Image Process. & Inf. Security Lab., UESTC, Chengdu, China – sequence: 4 surname: Wei Zhao fullname: Wei Zhao organization: Image Process. & Inf. Security Lab., UESTC, Chengdu, China |
| BookMark | eNo1kFFLwzAQxyMq6GY_wV7yBTqTa5omj6WoG0wEGfg40vZSI20qTX3YPr2RzXs5_r-Dux-3IDd-9EjIirM150w_bquy2pZrYBHkBdOaFVdkwQUIoRhIcU0SXaj_nKs7koTwxWLlUER2Tz5Kan9OpyOt0gGND7Q2AVtq-m6c3Pw5UDtOtHYmUOuwbymG2Q1mdqOnxrc0YDegn89gtPT1ncZxh-GB3FrTB0wufUn2z0_7apPu3l6i9S51ms2plbWFHP78tMKCa5M1TJkmyoHkQgA0UtSyYSImjgYMQ4DMSl7bliubLcnqvNYh4uF7isen4-HyiuwXe79TTQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICACIA.2010.5709907 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings Accès UT - IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1424480264 9781424480241 1424480248 9781424480265 |
| EndPage | 310 |
| ExternalDocumentID | 5709907 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-i90t-f6bf252424498e719a3c08ac2742614422c64b6c046141ea2a0e223f61bfd18f3 |
| IEDL.DBID | RIE |
| ISBN | 9781424480258 1424480256 |
| IngestDate | Wed Aug 27 03:25:06 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-f6bf252424498e719a3c08ac2742614422c64b6c046141ea2a0e223f61bfd18f3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_5709907 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-Dec. |
| PublicationDateYYYYMMDD | 2010-12-01 |
| PublicationDate_xml | – month: 12 year: 2010 text: 2010-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | 2010 International Conference on Apperceiving Computing and Intelligence Analysis |
| PublicationTitleAbbrev | ICACIA |
| PublicationYear | 2010 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000527448 |
| Score | 1.465359 |
| Snippet | This paper proposes a novel algorithm for simultaneous estimation of the bias field and segmentation of tissues for magnetic resonance images. The algorithm... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 307 |
| SubjectTerms | bias field Convergence Estimation fuzzy C-means Image segmentation Magnetic resonance magnetic resonance image Nonhomogeneous media Pixel Robustness |
| Title | A fuzzy C-means based algorithm for bias field estimation and segmentation of MR images |
| URI | https://ieeexplore.ieee.org/document/5709907 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA7bTp5UNvGb9-DRzn6m6XEUxyZMRCbuNpL0zRy6dmztwf16k7arKB68JSmUkBfyvF_PE0JuQgw8HnFtgRCZ5ScOs4RMlMU87lHtkNsJN6mBySMdvfgPs2DWIrcNFwYRy-Yz7JthWctPMlmYVJkO3k0ZJ2yTdshoxdVq8il2YLTu2J67xQyW7yWd6jmrVYccO7obx4N4PKhau-rf_nhfpYSX4SGZ7DdWdZW894tc9OXul2bjf3d-RHrfRD54aiDqmLQw7ZLXAahit_uE2FqhRiowSJYA_1hkm2X-tgLtx4JY8i2U7W1gdDgqgiPwNIEtLlY1YSmFTMHkGfTnBW57ZDq8n8Yjq35fwVpGdm4pKpQbGHqIHzEMnYh70mZcmuKtCRNdV1JfUGkk2X0Huctt1M6Eoo5Q2qbKOyGdNEvxlICeRKFyKacofUdxoaM2RwlUobkiFD8jXXMm83WloDGvj-P87-ULcuA2TSOXpJNvCrzS0J-L69LmX7AVqXc |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4UD3pSA8Zve_DocB9d1x3JIgFlxBiM3EjbvUWibAa2g_x6221gNB68tV2yNH2TPu_X8xSh6wB8j4dcWyAAZpHEYZaQibKYxz2qHXI74SY1EA9p75ncj_3xFrrZcGEAoGw-g7YZlrX8JJOFSZXp4N2UcYJttOMTQvyKrbXJqNi-Ubtja_YWM2i-FnWq56zWHXLs8LYfdaJ-p2ruqn_844WVEmC6-yheb63qK3lrF7loy9Uv1cb_7v0Atb6pfPhxA1KHaAvSJnrpYFWsVp84suagsQobLEswf59mi1n-Osfak8Vixpe4bHDDRomjojhiniZ4CdN5TVlKcaZw_IT15yksW2jUvRtFPat-YcGahXZuKSqU6xuCCAkZBE7IPWkzLk351gSKrispEVQaUXbiAHe5DdqdUNQRSltVeUeokWYpHCOsJ2GgXMopSOIoLnTc5igBKjCXhOInqGnOZPJRaWhM6uM4_Xv5Cu32RvFgMugPH87QnrtpITlHjXxRwIV2BHJxWdr_C8WjrMQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+International+Conference+on+Apperceiving+Computing+and+Intelligence+Analysis&rft.atitle=A+fuzzy+C-means+based+algorithm+for+bias+field+estimation+and+segmentation+of+MR+images&rft.au=Bei+Yan&rft.au=Mei+Xie&rft.au=Jing-Jing+Gao&rft.au=Wei+Zhao&rft.date=2010-12-01&rft.pub=IEEE&rft.isbn=9781424480258&rft.spage=307&rft.epage=310&rft_id=info:doi/10.1109%2FICACIA.2010.5709907&rft.externalDocID=5709907 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424480258/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424480258/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424480258/sc.gif&client=summon&freeimage=true |