Automatic Question Generation system

The process of automating the question generation consists of many tasks. Selecting the target content (what to ask), question type (who, why, how) and actual question generation are the major issue of Automatic Question Generation. Certain definitions retrieved is available in Wikipedia either dire...

Full description

Saved in:
Bibliographic Details
Published in2014 International Conference on Recent Trends in Information Technology pp. 1 - 5
Main Authors Pabitha, P., Mohana, M., Suganthi, S., Sivanandhini, B.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2014
Subjects
Online AccessGet full text
DOI10.1109/ICRTIT.2014.6996216

Cover

Abstract The process of automating the question generation consists of many tasks. Selecting the target content (what to ask), question type (who, why, how) and actual question generation are the major issue of Automatic Question Generation. Certain definitions retrieved is available in Wikipedia either directly or is the outcome of executing set of sub queries for each key phrase categories The problem in the existing system is that some of the definition sentences which are taken out from Wikipedia were implicit. The proposed system overcomes the problems by using Supervised Learning Approach, Naïve Bayes method. It also extends its work to use Summarization, Noun Filtering and Question Generation in the aim of generating semantically correct questions.
AbstractList The process of automating the question generation consists of many tasks. Selecting the target content (what to ask), question type (who, why, how) and actual question generation are the major issue of Automatic Question Generation. Certain definitions retrieved is available in Wikipedia either directly or is the outcome of executing set of sub queries for each key phrase categories The problem in the existing system is that some of the definition sentences which are taken out from Wikipedia were implicit. The proposed system overcomes the problems by using Supervised Learning Approach, Naïve Bayes method. It also extends its work to use Summarization, Noun Filtering and Question Generation in the aim of generating semantically correct questions.
Author Pabitha, P.
Mohana, M.
Suganthi, S.
Sivanandhini, B.
Author_xml – sequence: 1
  givenname: P.
  surname: Pabitha
  fullname: Pabitha, P.
  email: pabithap@gmail.com
  organization: Dept. of Comput. Technol., Anna Univ., Chennai, India
– sequence: 2
  givenname: M.
  surname: Mohana
  fullname: Mohana, M.
  email: mona28892@gmail.com
  organization: Dept. of Comput. Technol., Anna Univ., Chennai, India
– sequence: 3
  givenname: S.
  surname: Suganthi
  fullname: Suganthi, S.
  email: sugikushal@gmail.com
  organization: Dept. of Comput. Technol., Anna Univ., Chennai, India
– sequence: 4
  givenname: B.
  surname: Sivanandhini
  fullname: Sivanandhini, B.
  email: firstproject245@gmail.com
  organization: Dept. of Comput. Technol., Anna Univ., Chennai, India
BookMark eNotjjFrwzAQRhVohzTNL8iSIavdO0mWcmMwbWoIlBbv4SyfQVDbwVaG_PuWNtP34MHje1IPwziIUhuEHBHopSq_6qrONaDNHZHT6BZqTX6P1hNZ2pNeqt3hmsaeUwzbz6vMKY7D9iiDTPyH821O0j-rx46_Z1nfd6Xqt9e6fM9OH8eqPJyySJCyDqQw0oaWhRtoTWM60J21jQdrjLFI3uqARatDIGZE57zTVLD_1R6cWanNfzaKyPkyxZ6n2_l-3fwA9es8pA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICRTIT.2014.6996216
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479949892
1479949892
EndPage 5
ExternalDocumentID 6996216
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-f0e53edcdaeab0d3b3f02f44b704333419742c15d2cc9aa116676295a74337063
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:40 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-f0e53edcdaeab0d3b3f02f44b704333419742c15d2cc9aa116676295a74337063
PageCount 5
ParticipantIDs ieee_primary_6996216
PublicationCentury 2000
PublicationDate 2014-April
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-April
PublicationDecade 2010
PublicationTitle 2014 International Conference on Recent Trends in Information Technology
PublicationTitleAbbrev ICRTIT
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6081811
Snippet The process of automating the question generation consists of many tasks. Selecting the target content (what to ask), question type (who, why, how) and actual...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Automatic Question Generation
Data mining
Information filters
Information services
Information technology
Key phrases
Naïve Bayes
Noun Filtering
Stemming
Summarization
Supervised Machine Learning
Title Automatic Question Generation system
URI https://ieeexplore.ieee.org/document/6996216
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMcf206eVDbxNz3saLomTdrlKMOxCYpIhd1GfryCCK1Ie_GvX5LWieLBWyiFNC-H933p930CMHWS1SSlRSJTKwkXtCTKVQ2EWYae9yRSDG6Lx2z1wu83YjOAm30vDCIG8xnGfhj-5dvatP6obJY5cc5oNoRhPs-6Xq0eJEQTOVsvnot14d1aPO7f_HFlSsgYy0N4-JqrM4q8xW2jY_P5C8P43485gsl3b170tM86xzDAagzT27apA3w1CieYLthRB5QOww7XPIFieVcsVqS__4C8yqQhZYIuUtZYhUonNtVpmbCSc5176JjnsLmy1lBhmTFSKUq9XZVJoZwoSHMnPU5gVNUVnkJEreCZzbVVGeNzRCms5lblLNVOYhhzBmO_wO17R7jY9ms7__vxBRz4IHf-lUsYNR8tXrnU3OjrsCc7Io-Pkw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMcfcx70pLKJv-1hR9M1adKaowxl022IVNht5McriLCJtBf_epO0ThQP3kIppHk5vO9Lv-8TgIGTrCYpLRKZWkm4oCVRrmogzDL0vCeRYnBbzLPxM79fiEUHrja9MIgYzGcY-2H4l2_XpvZHZcPMiXNGsy3YFpxz0XRrtSghmsjhZPRUTArv1-Jx--6PS1NCzrjbg9nXbI1V5DWuKx2bj18gxv9-zj70v7vzosdN3jmADq56MLipq3XAr0bhDNOFO2qQ0mHYAJv7UNzdFqMxaW9AIC8yqUiZoIuVNVah0olNdVomrORc5x475klsrrA1VFhmjFSKUm9YZVIoJwvS3ImPQ-iu1is8gohawTOba6syxq8RpbCaW5WzVDuRYcwx9PwCl28N42LZru3k78eXsDMuZtPldDJ_OIVdH_DGzXIG3eq9xnOXqCt9EfbnE9sfkuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+International+Conference+on+Recent+Trends+in+Information+Technology&rft.atitle=Automatic+Question+Generation+system&rft.au=Pabitha%2C+P.&rft.au=Mohana%2C+M.&rft.au=Suganthi%2C+S.&rft.au=Sivanandhini%2C+B.&rft.date=2014-04-01&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICRTIT.2014.6996216&rft.externalDocID=6996216