Driver behavior analysis based on Bayesian network and multiple classifiers
Driver behavior model is one of the key technologies for the driver assistance and safety system which can provide useful priori knowledge for detecting the deviant and dangerous behavior. This paper proposes the hybrid model based on Bayesian network and multiple classifiers of support vector machi...
Saved in:
Published in | 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems Vol. 3; pp. 663 - 668 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2010
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424465828 1424465826 |
DOI | 10.1109/ICICISYS.2010.5658384 |
Cover
Abstract | Driver behavior model is one of the key technologies for the driver assistance and safety system which can provide useful priori knowledge for detecting the deviant and dangerous behavior. This paper proposes the hybrid model based on Bayesian network and multiple classifiers of support vector machine to analyze and recognize the driver behavior and the limited and observable features of driver behavior are extracted in the model. In addition, the relationship between the features and driver behavior is analyzed. The effect of data loss on the hybrid model is also analyzed. Finally, the hybrid model is compared with support vector machine. Experiment results show that the hybrid model can achieve better accuracy and stability. |
---|---|
AbstractList | Driver behavior model is one of the key technologies for the driver assistance and safety system which can provide useful priori knowledge for detecting the deviant and dangerous behavior. This paper proposes the hybrid model based on Bayesian network and multiple classifiers of support vector machine to analyze and recognize the driver behavior and the limited and observable features of driver behavior are extracted in the model. In addition, the relationship between the features and driver behavior is analyzed. The effect of data loss on the hybrid model is also analyzed. Finally, the hybrid model is compared with support vector machine. Experiment results show that the hybrid model can achieve better accuracy and stability. |
Author | Zhangjun Song Li Liu Guoqing Xu |
Author_xml | – sequence: 1 surname: Guoqing Xu fullname: Guoqing Xu organization: Shenzhen Institutes of Adv. Technol., Chinese Acad. of Sci., Shenzhen, China – sequence: 2 surname: Li Liu fullname: Li Liu organization: Shenzhen Institutes of Adv. Technol., Chinese Acad. of Sci., Shenzhen, China – sequence: 3 surname: Zhangjun Song fullname: Zhangjun Song organization: Shenzhen Institutes of Adv. Technol., Chinese Acad. of Sci., Shenzhen, China |
BookMark | eNo1T81Kw0AYXFFBW_MEIuwLpO5fkt2jxr9iwUN78VS-bL7garopu7GSt3fBOnMYZhgGZkbO_OCRkBvOFpwzc7usE9fv64VgKSrKQkutTsiMK6FUckqcksxU-t8LfUGyGD9ZQmoXurokrw_BHTDQBj_g4IZAwUM_RRdpAxFbOnh6DxNGB556HH-G8JUqLd1996Pb90htDzG6zmGIV-S8gz5idtQ52Tw9buqXfPX2vKzvVrkzbMzRWsEaURhpdSfLVmKpoWXKMFtYYcAil5WxWqagkh1rpOadlQoVM7bVRs7J9d-sQ8TtPrgdhGl7vC9_AQFrUcM |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICICISYS.2010.5658384 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1424465842 1424465850 9781424465842 9781424465859 |
EndPage | 668 |
ExternalDocumentID | 5658384 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i90t-ecc20b2593c8f36d3e68ad0490c5c29ace1379c8390c73f0b381fc34e409cd893 |
IEDL.DBID | RIE |
ISBN | 9781424465828 1424465826 |
IngestDate | Wed Aug 27 02:55:07 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-ecc20b2593c8f36d3e68ad0490c5c29ace1379c8390c73f0b381fc34e409cd893 |
PageCount | 6 |
ParticipantIDs | ieee_primary_5658384 |
PublicationCentury | 2000 |
PublicationDate | 2010-Oct. |
PublicationDateYYYYMMDD | 2010-10-01 |
PublicationDate_xml | – month: 10 year: 2010 text: 2010-Oct. |
PublicationDecade | 2010 |
PublicationTitle | 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems |
PublicationTitleAbbrev | ICICISYS |
PublicationYear | 2010 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000565587 |
Score | 1.5360821 |
Snippet | Driver behavior model is one of the key technologies for the driver assistance and safety system which can provide useful priori knowledge for detecting the... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 663 |
SubjectTerms | Acceleration Adaptation model Bayesian network driver behavior model Driver circuits Hidden Markov models multiple classifiers support vector machine |
Title | Driver behavior analysis based on Bayesian network and multiple classifiers |
URI | https://ieeexplore.ieee.org/document/5658384 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNDh7dNm12N8nVaqlKRWiFeip5TKAIWym7B_31TvZRUTzIXrJLCNnJ4ZvMfN8MIVcCmFGpZlEcg45i6SFSYF2USsPBaiXAhdDA7CmdvsQPy2TZItc7LQwAlOQz6Idhmct3G1uEUNkAnQ_JZdwmbSFUpdXaxVMQyJNEika7hTNHaVPSqX6XtYJnyNTgfozP_HVekbvqhX90WCkBZrJPZs3WKl7JW7_ITd9-_qra-N-9H5Det5SPPu9A6pC0IOuSx9ttoGPQRqNPdV2ahAZQc3ST0Rv9AUFfSbOKJ45THG3Yh9QGn3vtQxvtHllM7hbjaVR3VYjWiuURHtmIGbz0cCs9Tx2HVGoX8n82sSOlLQy5UBb9JmYF98wgpHvLY8CLoHXo3RyRTrbJ4JhQM8RfMj4UtPEx-kHGSi24kh5tzUDKE9INdli9V3UzVrUJTv_-fEb2ysx8SZQ7J518W8AFAn5uLsuT_gKyBKfm |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61HvSk0opvc_DotmmT3SRXq6W1D4RWqKeSxwRE2ErZHvTXm-yjoniQvewuYcnOHL7JzPfNIHTDgWiZKBIxBipiwkEkwdgoEZqCUZKDDamByTQZPLPHRbyoodutFgYAcvIZtMJtXsu3K7MJqbK2Dz4EFWwH7caM8W6h1tpmVDyUx7HglXrLr-0mVVOn8lmUGp4Oke1hz1-zl1lB7yo__WPGSg4x_QM0qTZXMEveWptMt8znr76N_939IWp-i_nw0xamjlAN0gYa3a8DIQNXKn2syuYkOMCaxasU36kPCApLnBZMcb_E4op_iE2Iul9dGKTdRPP-w7w3iMq5CtGrJFnkndYl2h97qBGOJpZCIpQNFUATm65UBjqUS-MjJ2I4dUR7UHeGMvBHQWN9fHOM6ukqhROEdcf_knahpY3zDuHaCMWpFM7bmoAQp6gR7LB8LzpnLEsTnP39-hrtDeaT8XI8nI7O0X5ep89pcxeonq03cOnhP9NXude_AK6WqzE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+International+Conference+on+Intelligent+Computing+and+Intelligent+Systems&rft.atitle=Driver+behavior+analysis+based+on+Bayesian+network+and+multiple+classifiers&rft.au=Guoqing+Xu&rft.au=Li+Liu&rft.au=Zhangjun+Song&rft.date=2010-10-01&rft.pub=IEEE&rft.isbn=9781424465828&rft.volume=3&rft.spage=663&rft.epage=668&rft_id=info:doi/10.1109%2FICICISYS.2010.5658384&rft.externalDocID=5658384 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465828/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465828/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465828/sc.gif&client=summon&freeimage=true |