Driver behavior analysis based on Bayesian network and multiple classifiers

Driver behavior model is one of the key technologies for the driver assistance and safety system which can provide useful priori knowledge for detecting the deviant and dangerous behavior. This paper proposes the hybrid model based on Bayesian network and multiple classifiers of support vector machi...

Full description

Saved in:
Bibliographic Details
Published in2010 IEEE International Conference on Intelligent Computing and Intelligent Systems Vol. 3; pp. 663 - 668
Main Authors Guoqing Xu, Li Liu, Zhangjun Song
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2010
Subjects
Online AccessGet full text
ISBN9781424465828
1424465826
DOI10.1109/ICICISYS.2010.5658384

Cover

Abstract Driver behavior model is one of the key technologies for the driver assistance and safety system which can provide useful priori knowledge for detecting the deviant and dangerous behavior. This paper proposes the hybrid model based on Bayesian network and multiple classifiers of support vector machine to analyze and recognize the driver behavior and the limited and observable features of driver behavior are extracted in the model. In addition, the relationship between the features and driver behavior is analyzed. The effect of data loss on the hybrid model is also analyzed. Finally, the hybrid model is compared with support vector machine. Experiment results show that the hybrid model can achieve better accuracy and stability.
AbstractList Driver behavior model is one of the key technologies for the driver assistance and safety system which can provide useful priori knowledge for detecting the deviant and dangerous behavior. This paper proposes the hybrid model based on Bayesian network and multiple classifiers of support vector machine to analyze and recognize the driver behavior and the limited and observable features of driver behavior are extracted in the model. In addition, the relationship between the features and driver behavior is analyzed. The effect of data loss on the hybrid model is also analyzed. Finally, the hybrid model is compared with support vector machine. Experiment results show that the hybrid model can achieve better accuracy and stability.
Author Zhangjun Song
Li Liu
Guoqing Xu
Author_xml – sequence: 1
  surname: Guoqing Xu
  fullname: Guoqing Xu
  organization: Shenzhen Institutes of Adv. Technol., Chinese Acad. of Sci., Shenzhen, China
– sequence: 2
  surname: Li Liu
  fullname: Li Liu
  organization: Shenzhen Institutes of Adv. Technol., Chinese Acad. of Sci., Shenzhen, China
– sequence: 3
  surname: Zhangjun Song
  fullname: Zhangjun Song
  organization: Shenzhen Institutes of Adv. Technol., Chinese Acad. of Sci., Shenzhen, China
BookMark eNo1T81Kw0AYXFFBW_MEIuwLpO5fkt2jxr9iwUN78VS-bL7garopu7GSt3fBOnMYZhgGZkbO_OCRkBvOFpwzc7usE9fv64VgKSrKQkutTsiMK6FUckqcksxU-t8LfUGyGD9ZQmoXurokrw_BHTDQBj_g4IZAwUM_RRdpAxFbOnh6DxNGB556HH-G8JUqLd1996Pb90htDzG6zmGIV-S8gz5idtQ52Tw9buqXfPX2vKzvVrkzbMzRWsEaURhpdSfLVmKpoWXKMFtYYcAil5WxWqagkh1rpOadlQoVM7bVRs7J9d-sQ8TtPrgdhGl7vC9_AQFrUcM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICICISYS.2010.5658384
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1424465842
1424465850
9781424465842
9781424465859
EndPage 668
ExternalDocumentID 5658384
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-ecc20b2593c8f36d3e68ad0490c5c29ace1379c8390c73f0b381fc34e409cd893
IEDL.DBID RIE
ISBN 9781424465828
1424465826
IngestDate Wed Aug 27 02:55:07 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-ecc20b2593c8f36d3e68ad0490c5c29ace1379c8390c73f0b381fc34e409cd893
PageCount 6
ParticipantIDs ieee_primary_5658384
PublicationCentury 2000
PublicationDate 2010-Oct.
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-Oct.
PublicationDecade 2010
PublicationTitle 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems
PublicationTitleAbbrev ICICISYS
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000565587
Score 1.5360821
Snippet Driver behavior model is one of the key technologies for the driver assistance and safety system which can provide useful priori knowledge for detecting the...
SourceID ieee
SourceType Publisher
StartPage 663
SubjectTerms Acceleration
Adaptation model
Bayesian network
driver behavior model
Driver circuits
Hidden Markov models
multiple classifiers
support vector machine
Title Driver behavior analysis based on Bayesian network and multiple classifiers
URI https://ieeexplore.ieee.org/document/5658384
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNDh7dNm12N8nVaqlKRWiFeip5TKAIWym7B_31TvZRUTzIXrJLCNnJ4ZvMfN8MIVcCmFGpZlEcg45i6SFSYF2USsPBaiXAhdDA7CmdvsQPy2TZItc7LQwAlOQz6Idhmct3G1uEUNkAnQ_JZdwmbSFUpdXaxVMQyJNEika7hTNHaVPSqX6XtYJnyNTgfozP_HVekbvqhX90WCkBZrJPZs3WKl7JW7_ITd9-_qra-N-9H5Det5SPPu9A6pC0IOuSx9ttoGPQRqNPdV2ahAZQc3ST0Rv9AUFfSbOKJ45THG3Yh9QGn3vtQxvtHllM7hbjaVR3VYjWiuURHtmIGbz0cCs9Tx2HVGoX8n82sSOlLQy5UBb9JmYF98wgpHvLY8CLoHXo3RyRTrbJ4JhQM8RfMj4UtPEx-kHGSi24kh5tzUDKE9INdli9V3UzVrUJTv_-fEb2ysx8SZQ7J518W8AFAn5uLsuT_gKyBKfm
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61HvSk0opvc_DotmmT3SRXq6W1D4RWqKeSxwRE2ErZHvTXm-yjoniQvewuYcnOHL7JzPfNIHTDgWiZKBIxBipiwkEkwdgoEZqCUZKDDamByTQZPLPHRbyoodutFgYAcvIZtMJtXsu3K7MJqbK2Dz4EFWwH7caM8W6h1tpmVDyUx7HglXrLr-0mVVOn8lmUGp4Oke1hz1-zl1lB7yo__WPGSg4x_QM0qTZXMEveWptMt8znr76N_939IWp-i_nw0xamjlAN0gYa3a8DIQNXKn2syuYkOMCaxasU36kPCApLnBZMcb_E4op_iE2Iul9dGKTdRPP-w7w3iMq5CtGrJFnkndYl2h97qBGOJpZCIpQNFUATm65UBjqUS-MjJ2I4dUR7UHeGMvBHQWN9fHOM6ukqhROEdcf_knahpY3zDuHaCMWpFM7bmoAQp6gR7LB8LzpnLEsTnP39-hrtDeaT8XI8nI7O0X5ep89pcxeonq03cOnhP9NXude_AK6WqzE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+International+Conference+on+Intelligent+Computing+and+Intelligent+Systems&rft.atitle=Driver+behavior+analysis+based+on+Bayesian+network+and+multiple+classifiers&rft.au=Guoqing+Xu&rft.au=Li+Liu&rft.au=Zhangjun+Song&rft.date=2010-10-01&rft.pub=IEEE&rft.isbn=9781424465828&rft.volume=3&rft.spage=663&rft.epage=668&rft_id=info:doi/10.1109%2FICICISYS.2010.5658384&rft.externalDocID=5658384
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465828/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465828/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465828/sc.gif&client=summon&freeimage=true