A New Feature Dimensionally Reduction Approach Based on General Tensor Discriminant Analysis in EEG Signal Classification
Feature selection from electroencephalogram (EEG) signals is important steps in BCI and medicine application. In this paper, a feature dimensionally reduction approach based on general tensor discriminant analysis (GTDA) is proposed. In this approach, EEG signal epochs are decomposed as spectral, sp...
Saved in:
| Published in | 2011 International Conference on Intelligent Computation and Bio-Medical Instrumentation pp. 188 - 191 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.12.2011
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 9781457711527 1457711524 |
| DOI | 10.1109/ICBMI.2011.32 |
Cover
| Abstract | Feature selection from electroencephalogram (EEG) signals is important steps in BCI and medicine application. In this paper, a feature dimensionally reduction approach based on general tensor discriminant analysis (GTDA) is proposed. In this approach, EEG signal epochs are decomposed as spectral, spatial and temporal domain by Gabor functions as third order tensors. Then, projection vectors are extracted from tensor-represented EEG signals by GTDA. In this approach, the discriminative information in the training tensors is preserved that is a benefit in comparison with common feature space reduction approaches such as linear discriminant analysis (LDA) and principal component analysis (PCA). The proposed approach is evaluated to classify three mental tasks. The results indicate the improvement of classification performance in comparison with current methods. |
|---|---|
| AbstractList | Feature selection from electroencephalogram (EEG) signals is important steps in BCI and medicine application. In this paper, a feature dimensionally reduction approach based on general tensor discriminant analysis (GTDA) is proposed. In this approach, EEG signal epochs are decomposed as spectral, spatial and temporal domain by Gabor functions as third order tensors. Then, projection vectors are extracted from tensor-represented EEG signals by GTDA. In this approach, the discriminative information in the training tensors is preserved that is a benefit in comparison with common feature space reduction approaches such as linear discriminant analysis (LDA) and principal component analysis (PCA). The proposed approach is evaluated to classify three mental tasks. The results indicate the improvement of classification performance in comparison with current methods. |
| Author | Pourghassem, H. Nasehi, S. |
| Author_xml | – sequence: 1 givenname: S. surname: Nasehi fullname: Nasehi, S. email: st_nasehi@sel.iaun.ac.ir organization: Dept. of Electr. Eng., Islamic Azad Univ., Isfahan, Iran – sequence: 2 givenname: H. surname: Pourghassem fullname: Pourghassem, H. email: h_pourghasem@iaun.ac.ir organization: Dept. of Electr. Eng., Islamic Azad Univ., Isfahan, Iran |
| BookMark | eNpVTsFOwzAUCwIkYOzIiUt-YCOvaZvl2JVtTBogwe7TS_YCQV06NUWof08QXPDFsmVbvmJnoQ3E2A2IKYDQd-t6_rieZgJgKrMTNtZqBnmhFEAB4vSfztQFG8f4IRLKUiuhLtlQ8Sf64kvC_rMjfu8PFKJvAzbNwF9o_2n7pHh1PHYt2nc-x0h7npwVBeqw4duUb7tUjLbzBx8w9LxK9SH6yH3gi8WKv_q35PC6wRi98xZ_Nq_ZucMm0viPR2y7XGzrh8nmebWuq83Ea9FPCFEbbdLdLHdF4aRCawhQ5yQKaWRWGOfQzApVAgoSmQPYZ8rYHF1uScsRu_2d9US0O6aP2A27EiSoXMpv1r9g2Q |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICBMI.2011.32 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781457711510 0769546234 9780769546230 1457711516 |
| EndPage | 191 |
| ExternalDocumentID | 6131743 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-i90t-eaa9b9b66924f55f37acbe1a94e053b325bffab85761a0e02f11d27bc4af4ce93 |
| IEDL.DBID | RIE |
| ISBN | 9781457711527 1457711524 |
| IngestDate | Wed Aug 27 04:12:36 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-eaa9b9b66924f55f37acbe1a94e053b325bffab85761a0e02f11d27bc4af4ce93 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_6131743 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-Dec. |
| PublicationDateYYYYMMDD | 2011-12-01 |
| PublicationDate_xml | – month: 12 year: 2011 text: 2011-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | 2011 International Conference on Intelligent Computation and Bio-Medical Instrumentation |
| PublicationTitleAbbrev | icbmi |
| PublicationYear | 2011 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000669707 ssib026766923 |
| Score | 1.4984907 |
| Snippet | Feature selection from electroencephalogram (EEG) signals is important steps in BCI and medicine application. In this paper, a feature dimensionally reduction... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 188 |
| SubjectTerms | Accuracy EEG Electroencephalography Feature extraction Gabor functions General Tensor Discriminant Analysis (GTDA) ICA LDA Pattern classification PCA Principal component analysis Tensile stress Training |
| Title | A New Feature Dimensionally Reduction Approach Based on General Tensor Discriminant Analysis in EEG Signal Classification |
| URI | https://ieeexplore.ieee.org/document/6131743 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ09qwPjOHjxa6GNfPQKCYIIxigk3stvuGqIphrQH_PXubFswxoO3dtIm7exk5pvdmW8QuiGQdAREepwwYxOUKPUEocSLUt-GfyKo8KFRePbIJq_kYUEXDXS764XRWrviM92FS3eWn66TArbKejb0AIBuoiYXrOzVqm0nZJyxOhUovTCLuc9dLxfl3AKfkNQUT9U933Nu9qbDwWxaMnrCJJIfk1ZcoBkfoln9iWV9yXu3yFU3-frF3vjffzhCnX1LH37aBatj1NBZG2372Do5DDCw2Gh8B0z_JUvHxxY_A6krLBvuV7zjeGBDXoqtpCKrxnP7_HpjXwTnUxbV4JrmBK8yPBrd45fVm5VgN30T6pKcKXTQfDyaDydeNYvBW8V-7mkpYxUrUDExlJqIy0TpQMYERkuoKKTKGKmEzV4C6Ws_NEGQhlwlRBqS6Dg6Qa1snelThI1dFsEtLpVSEwsXBEAUwqiKZEAlJ2eoDVpbfpZsG8tKYed_iy_QgdvldQUml6iVbwp9ZWFCrq6dfXwDRMe3TA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GOMAJ0IZ4kwNHuvXhNO1xGxsbrBOCIe02JW2CJlCHpvYwfj1J2m4IceDWWq3UOpb9ObE_I3QDOulwgFkUfKkSFC-xAiBgeYmtwj8EJLB1o3A08Yev8DAjsxq63fTCCCFM8Zlo6Utzlp8s41xvlbVV6NEAegftEgAgRbdWZT2uT32_SgYKP-yH1Kamm4tQqqCPCxXJU3lPt6yb7VGvG40KTk89i-THrBUTagYHKKo-sqgweW_lGW_FX7_4G__7F4eouW3qw0-bcHWEaiJtoHUHKzeHNRDMVwLfaa7_gqfjY42fNa2rXjjcKZnHcVcFvQQrSUlXjafq-eVKvajdT1FWgyuiE7xIcb9_j18Wb0qCzfxNXZlkjKGJpoP-tDe0ymkM1iK0M0swFvKQaxWDJER6lMVcOCwEPVyCey7hUjIeqPzFYbawXek4iUt5DExCLELvGNXTZSpOEJZqWQKqkCljAhRgCDRIAZ9wjzmEUThFDa21-WfBtzEvFXb2t_ga7Q2n0Xg-Hk0ez9G-2fM15SYXqJ6tcnGpQEPGr4ytfAMOkrqZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+International+Conference+on+Intelligent+Computation+and+Bio-Medical+Instrumentation&rft.atitle=A+New+Feature+Dimensionally+Reduction+Approach+Based+on+General+Tensor+Discriminant+Analysis+in+EEG+Signal+Classification&rft.au=Nasehi%2C+S.&rft.au=Pourghassem%2C+H.&rft.date=2011-12-01&rft.pub=IEEE&rft.isbn=9781457711527&rft.spage=188&rft.epage=191&rft_id=info:doi/10.1109%2FICBMI.2011.32&rft.externalDocID=6131743 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457711527/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457711527/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457711527/sc.gif&client=summon&freeimage=true |