A New Feature Dimensionally Reduction Approach Based on General Tensor Discriminant Analysis in EEG Signal Classification

Feature selection from electroencephalogram (EEG) signals is important steps in BCI and medicine application. In this paper, a feature dimensionally reduction approach based on general tensor discriminant analysis (GTDA) is proposed. In this approach, EEG signal epochs are decomposed as spectral, sp...

Full description

Saved in:
Bibliographic Details
Published in2011 International Conference on Intelligent Computation and Bio-Medical Instrumentation pp. 188 - 191
Main Authors Nasehi, S., Pourghassem, H.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2011
Subjects
Online AccessGet full text
ISBN9781457711527
1457711524
DOI10.1109/ICBMI.2011.32

Cover

Abstract Feature selection from electroencephalogram (EEG) signals is important steps in BCI and medicine application. In this paper, a feature dimensionally reduction approach based on general tensor discriminant analysis (GTDA) is proposed. In this approach, EEG signal epochs are decomposed as spectral, spatial and temporal domain by Gabor functions as third order tensors. Then, projection vectors are extracted from tensor-represented EEG signals by GTDA. In this approach, the discriminative information in the training tensors is preserved that is a benefit in comparison with common feature space reduction approaches such as linear discriminant analysis (LDA) and principal component analysis (PCA). The proposed approach is evaluated to classify three mental tasks. The results indicate the improvement of classification performance in comparison with current methods.
AbstractList Feature selection from electroencephalogram (EEG) signals is important steps in BCI and medicine application. In this paper, a feature dimensionally reduction approach based on general tensor discriminant analysis (GTDA) is proposed. In this approach, EEG signal epochs are decomposed as spectral, spatial and temporal domain by Gabor functions as third order tensors. Then, projection vectors are extracted from tensor-represented EEG signals by GTDA. In this approach, the discriminative information in the training tensors is preserved that is a benefit in comparison with common feature space reduction approaches such as linear discriminant analysis (LDA) and principal component analysis (PCA). The proposed approach is evaluated to classify three mental tasks. The results indicate the improvement of classification performance in comparison with current methods.
Author Pourghassem, H.
Nasehi, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Nasehi
  fullname: Nasehi, S.
  email: st_nasehi@sel.iaun.ac.ir
  organization: Dept. of Electr. Eng., Islamic Azad Univ., Isfahan, Iran
– sequence: 2
  givenname: H.
  surname: Pourghassem
  fullname: Pourghassem, H.
  email: h_pourghasem@iaun.ac.ir
  organization: Dept. of Electr. Eng., Islamic Azad Univ., Isfahan, Iran
BookMark eNpVTsFOwzAUCwIkYOzIiUt-YCOvaZvl2JVtTBogwe7TS_YCQV06NUWof08QXPDFsmVbvmJnoQ3E2A2IKYDQd-t6_rieZgJgKrMTNtZqBnmhFEAB4vSfztQFG8f4IRLKUiuhLtlQ8Sf64kvC_rMjfu8PFKJvAzbNwF9o_2n7pHh1PHYt2nc-x0h7npwVBeqw4duUb7tUjLbzBx8w9LxK9SH6yH3gi8WKv_q35PC6wRi98xZ_Nq_ZucMm0viPR2y7XGzrh8nmebWuq83Ea9FPCFEbbdLdLHdF4aRCawhQ5yQKaWRWGOfQzApVAgoSmQPYZ8rYHF1uScsRu_2d9US0O6aP2A27EiSoXMpv1r9g2Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICBMI.2011.32
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781457711510
0769546234
9780769546230
1457711516
EndPage 191
ExternalDocumentID 6131743
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-eaa9b9b66924f55f37acbe1a94e053b325bffab85761a0e02f11d27bc4af4ce93
IEDL.DBID RIE
ISBN 9781457711527
1457711524
IngestDate Wed Aug 27 04:12:36 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-eaa9b9b66924f55f37acbe1a94e053b325bffab85761a0e02f11d27bc4af4ce93
PageCount 4
ParticipantIDs ieee_primary_6131743
PublicationCentury 2000
PublicationDate 2011-Dec.
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-Dec.
PublicationDecade 2010
PublicationTitle 2011 International Conference on Intelligent Computation and Bio-Medical Instrumentation
PublicationTitleAbbrev icbmi
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669707
ssib026766923
Score 1.4984907
Snippet Feature selection from electroencephalogram (EEG) signals is important steps in BCI and medicine application. In this paper, a feature dimensionally reduction...
SourceID ieee
SourceType Publisher
StartPage 188
SubjectTerms Accuracy
EEG
Electroencephalography
Feature extraction
Gabor functions
General Tensor Discriminant Analysis (GTDA)
ICA
LDA
Pattern classification
PCA
Principal component analysis
Tensile stress
Training
Title A New Feature Dimensionally Reduction Approach Based on General Tensor Discriminant Analysis in EEG Signal Classification
URI https://ieeexplore.ieee.org/document/6131743
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ09qwPjOHjxa6GNfPQKCYIIxigk3stvuGqIphrQH_PXubFswxoO3dtIm7exk5pvdmW8QuiGQdAREepwwYxOUKPUEocSLUt-GfyKo8KFRePbIJq_kYUEXDXS764XRWrviM92FS3eWn66TArbKejb0AIBuoiYXrOzVqm0nZJyxOhUovTCLuc9dLxfl3AKfkNQUT9U933Nu9qbDwWxaMnrCJJIfk1ZcoBkfoln9iWV9yXu3yFU3-frF3vjffzhCnX1LH37aBatj1NBZG2372Do5DDCw2Gh8B0z_JUvHxxY_A6krLBvuV7zjeGBDXoqtpCKrxnP7_HpjXwTnUxbV4JrmBK8yPBrd45fVm5VgN30T6pKcKXTQfDyaDydeNYvBW8V-7mkpYxUrUDExlJqIy0TpQMYERkuoKKTKGKmEzV4C6Ws_NEGQhlwlRBqS6Dg6Qa1snelThI1dFsEtLpVSEwsXBEAUwqiKZEAlJ2eoDVpbfpZsG8tKYed_iy_QgdvldQUml6iVbwp9ZWFCrq6dfXwDRMe3TA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GOMAJ0IZ4kwNHuvXhNO1xGxsbrBOCIe02JW2CJlCHpvYwfj1J2m4IceDWWq3UOpb9ObE_I3QDOulwgFkUfKkSFC-xAiBgeYmtwj8EJLB1o3A08Yev8DAjsxq63fTCCCFM8Zlo6Utzlp8s41xvlbVV6NEAegftEgAgRbdWZT2uT32_SgYKP-yH1Kamm4tQqqCPCxXJU3lPt6yb7VGvG40KTk89i-THrBUTagYHKKo-sqgweW_lGW_FX7_4G__7F4eouW3qw0-bcHWEaiJtoHUHKzeHNRDMVwLfaa7_gqfjY42fNa2rXjjcKZnHcVcFvQQrSUlXjafq-eVKvajdT1FWgyuiE7xIcb9_j18Wb0qCzfxNXZlkjKGJpoP-tDe0ymkM1iK0M0swFvKQaxWDJER6lMVcOCwEPVyCey7hUjIeqPzFYbawXek4iUt5DExCLELvGNXTZSpOEJZqWQKqkCljAhRgCDRIAZ9wjzmEUThFDa21-WfBtzEvFXb2t_ga7Q2n0Xg-Hk0ez9G-2fM15SYXqJ6tcnGpQEPGr4ytfAMOkrqZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+International+Conference+on+Intelligent+Computation+and+Bio-Medical+Instrumentation&rft.atitle=A+New+Feature+Dimensionally+Reduction+Approach+Based+on+General+Tensor+Discriminant+Analysis+in+EEG+Signal+Classification&rft.au=Nasehi%2C+S.&rft.au=Pourghassem%2C+H.&rft.date=2011-12-01&rft.pub=IEEE&rft.isbn=9781457711527&rft.spage=188&rft.epage=191&rft_id=info:doi/10.1109%2FICBMI.2011.32&rft.externalDocID=6131743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457711527/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457711527/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457711527/sc.gif&client=summon&freeimage=true