Compressed sensing of correlated signals using belief propagation

Compressed Sensing (CS) has developed rapidly as an innovation in signal processing domain. Considering the situation that there are multiple sparse signals with redundancy, the correlation between them need to be properly utilized for further compression. To this end, a CS scheme based on Belief Pr...

Full description

Saved in:
Bibliographic Details
Published in2011 18th International Conference on Telecommunications pp. 146 - 150
Main Authors Xuqi Zhu, Yu Liu, Bin Li, Xun Wang, Wenbo Zhang, Lin Zhang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2011
Subjects
Online AccessGet full text
ISBN9781457700255
1457700255
DOI10.1109/CTS.2011.5898907

Cover

Abstract Compressed Sensing (CS) has developed rapidly as an innovation in signal processing domain. Considering the situation that there are multiple sparse signals with redundancy, the correlation between them need to be properly utilized for further compression. To this end, a CS scheme based on Belief Propagation (BP) algorithm is proposed to compress correlated sparse (compressible) signals in this paper. The BP algorithm is a kind of solution of Bayesian CS by considering CS problem as an analogy of channel coding. Inspired by this, we modify the original BP algorithm by the side information available only at the decoder to obtain better recovery performance with the same sensing rate. The simulation results show that the proposed scheme is superior to the separate BP scheme and the joint L1 scheme for the correlated sparse signals.
AbstractList Compressed Sensing (CS) has developed rapidly as an innovation in signal processing domain. Considering the situation that there are multiple sparse signals with redundancy, the correlation between them need to be properly utilized for further compression. To this end, a CS scheme based on Belief Propagation (BP) algorithm is proposed to compress correlated sparse (compressible) signals in this paper. The BP algorithm is a kind of solution of Bayesian CS by considering CS problem as an analogy of channel coding. Inspired by this, we modify the original BP algorithm by the side information available only at the decoder to obtain better recovery performance with the same sensing rate. The simulation results show that the proposed scheme is superior to the separate BP scheme and the joint L1 scheme for the correlated sparse signals.
Author Wenbo Zhang
Xun Wang
Yu Liu
Lin Zhang
Xuqi Zhu
Bin Li
Author_xml – sequence: 1
  surname: Xuqi Zhu
  fullname: Xuqi Zhu
  email: xqzhu@bupt.edu.cn
  organization: Key Lab. of Universal Wireless Commun., Beijing Univ. of Posts & Telecommun., Beijing, China
– sequence: 2
  surname: Yu Liu
  fullname: Yu Liu
  email: liuy@bupt.edu.cn
  organization: Key Lab. of Universal Wireless Commun., Beijing Univ. of Posts & Telecommun., Beijing, China
– sequence: 3
  surname: Bin Li
  fullname: Bin Li
  organization: Key Lab. of Universal Wireless Commun., Beijing Univ. of Posts & Telecommun., Beijing, China
– sequence: 4
  surname: Xun Wang
  fullname: Xun Wang
  organization: Key Lab. of Universal Wireless Commun., Beijing Univ. of Posts & Telecommun., Beijing, China
– sequence: 5
  surname: Wenbo Zhang
  fullname: Wenbo Zhang
  organization: Key Lab. of Universal Wireless Commun., Beijing Univ. of Posts & Telecommun., Beijing, China
– sequence: 6
  surname: Lin Zhang
  fullname: Lin Zhang
  email: zhanglin@bupt.edu.cn
  organization: Key Lab. of Universal Wireless Commun., Beijing Univ. of Posts & Telecommun., Beijing, China
BookMark eNo1T81KxDAYjKigu_YueOkLtH5pm7_jUnQVFjzY-5K0X0qkm5SkHnx7q65zGWYGhpkNufLBIyH3FEpKQT223XtZAaUlk0oqEBdkQxsmBEDViEuSKSH_NWM3JEvpA1ZwrjgXt2TXhtMcMSUc8oQ-OT_mweZ9iBEnvfy4bvR6Svnnb2ZwcmjzOYZZj3pxwd-Ra7vmmJ15S7rnp659KQ5v-9d2dyicgqVAoAalQaw0srrSAJJpjjjUg5R6najk0KO1RtacWyYk483AQRrKeksbqLfk4a_WIeJxju6k49fxfLr-BhGLTSY
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CTS.2011.5898907
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1457700247
9781457700248
EndPage 150
ExternalDocumentID 5898907
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-e01be8bee2ae532a0085a6eed3d88a81498dceffb8366f578564d608b15cf1403
IEDL.DBID RIE
ISBN 9781457700255
1457700255
IngestDate Wed Aug 27 02:52:56 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-e01be8bee2ae532a0085a6eed3d88a81498dceffb8366f578564d608b15cf1403
PageCount 5
ParticipantIDs ieee_primary_5898907
PublicationCentury 2000
PublicationDate 2011-May
PublicationDateYYYYMMDD 2011-05-01
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-May
PublicationDecade 2010
PublicationTitle 2011 18th International Conference on Telecommunications
PublicationTitleAbbrev CTS
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669667
Score 1.4709661
Snippet Compressed Sensing (CS) has developed rapidly as an innovation in signal processing domain. Considering the situation that there are multiple sparse signals...
SourceID ieee
SourceType Publisher
StartPage 146
SubjectTerms belief propagation
Compressed sensing
correlated signals
Correlation
Encoding
Joints
Noise measurement
Sensors
side information
Signal processing algorithms
Title Compressed sensing of correlated signals using belief propagation
URI https://ieeexplore.ieee.org/document/5898907
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMfD3MmTyib-pgePdkva_OpRhmMIE8EJu42meRlD6UTbi3-9eWk7UTx4a1NoXxrIe7y87-cRcp1oYTPHWSwsg5jrjMaGJUXsKGhqFAeVY75j_iBnz_x-KZY9crPTwgBAKD6DEV6Gs3y7LWpMlY0F9jpE6fieUlmj1drlU7zr9JG7CtotoVSIlTukU3ffHVPSbDxZPDX8zvadP5qrBN8yPSDzzqqmpORlVFdmVHz-Ajb-1-xDMvxW8UWPO_90RHpQDsgtbgABGG6jDyxeL9fR1kUFNul49XGnH92skakc1eGZAR-kusib5neesIpDspjeLSazuG2jEG8yWsVAmQFtAJIcRJrkGGTl0n86tVrn_u9k2hbgnNGplA7ZN5JbSbVhonBI8zsm_XJbwgmJcskdGE2R2sW1yExiJWOQok4PQfenZICzX701oIxVO_Gzv4fPyX6ToMXqwQvSr95ruPQevjJXYWm_AFllofI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMfDmAc9qWzib3vwaLe0TdL0KMMxdRuCFXYbTfMyhtINbS_-9eal60Tx4K1NoX1pIO_x8r6fR8h1KLlODAt8rgPwmUyor4Iw9w0FSVXMIM4w3zGZitELe5jxWYvcbLUwAOCKz6CHl-4sX6_yClNlfY69DlE6vsMZi8NarbXNqFjnaWP32Km3eBy7aLmBOjX3zUElTfqD9LkmeG7e-qO9ivMuw30yaeyqi0pee1WpevnnL2Tjfw0_IN1vHZ_3tPVQh6QFRYfc4hbgkOHa-8Dy9WLhrYyXY5uONxt52tHlAqnKXuWeKbBhqvGsaXbvcevYJenwLh2M_E0jBX-Z0NIHGiiQCiDMgEdhhmFWJuynIy1lZv9OInUOxigZCWGQfiOYFlSqgOcGeX5HpF2sCjgmXiaYASUpcruY5IkKtQgCiFCph6j7E9LB2c_XNSpjvpn46d_DV2R3lE7G8_H99PGM7NXpWqwlPCft8r2CC-vvS3XplvkLBrilPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+18th+International+Conference+on+Telecommunications&rft.atitle=Compressed+sensing+of+correlated+signals+using+belief+propagation&rft.au=Xuqi+Zhu&rft.au=Yu+Liu&rft.au=Bin+Li&rft.au=Xun+Wang&rft.date=2011-05-01&rft.pub=IEEE&rft.isbn=9781457700255&rft.spage=146&rft.epage=150&rft_id=info:doi/10.1109%2FCTS.2011.5898907&rft.externalDocID=5898907
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457700255/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457700255/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457700255/sc.gif&client=summon&freeimage=true