Local approach to orthogonal subspace-based target detection in hyperspectral images

Airborne or satellite hyperspectral sensing has proven valuable in many target detection applications, thanks to the dense spectral sampling of the sensed data, which provides a high material discriminability. Within this framework, this paper focuses on detection algorithms that rely upon subspace-...

Full description

Saved in:
Bibliographic Details
Published in2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing pp. 1 - 4
Main Authors Matteoli, S., Acito, N., Diani, M., Corsini, G.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2009
Subjects
Online AccessGet full text
ISBN9781424446865
1424446864
ISSN2158-6268
DOI10.1109/WHISPERS.2009.5289095

Cover

Abstract Airborne or satellite hyperspectral sensing has proven valuable in many target detection applications, thanks to the dense spectral sampling of the sensed data, which provides a high material discriminability. Within this framework, this paper focuses on detection algorithms that rely upon subspace-based characterization of background. Whereas background subspace estimation has been typically accomplished through a global approach, which employs the whole image, a local methodology is here adopted. In fact, most of the interference affecting targets derives from the background materials in which they are inserted. Such a background interference lies in a subspace that is more likely spanned by the spectra of the pixels in the target neighborhood, rather than by endmembers/eigenvectors extracted from the whole image. Real hyperspectral imagery from the HyMap sensor is used to experimentally compare both global and local approaches to background subspace estimation. On this data, which exemplifies a mixed-pixel cluttered detection problem, detection results were strongly in favor of the local approach.
AbstractList Airborne or satellite hyperspectral sensing has proven valuable in many target detection applications, thanks to the dense spectral sampling of the sensed data, which provides a high material discriminability. Within this framework, this paper focuses on detection algorithms that rely upon subspace-based characterization of background. Whereas background subspace estimation has been typically accomplished through a global approach, which employs the whole image, a local methodology is here adopted. In fact, most of the interference affecting targets derives from the background materials in which they are inserted. Such a background interference lies in a subspace that is more likely spanned by the spectra of the pixels in the target neighborhood, rather than by endmembers/eigenvectors extracted from the whole image. Real hyperspectral imagery from the HyMap sensor is used to experimentally compare both global and local approaches to background subspace estimation. On this data, which exemplifies a mixed-pixel cluttered detection problem, detection results were strongly in favor of the local approach.
Author Corsini, G.
Diani, M.
Acito, N.
Matteoli, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Matteoli
  fullname: Matteoli, S.
  organization: Dipt. di. Ing. dell'Inf., Univ. di Pisa, Pisa, Italy
– sequence: 2
  givenname: N.
  surname: Acito
  fullname: Acito, N.
  organization: Accademia Navale, Livorno, Italy
– sequence: 3
  givenname: M.
  surname: Diani
  fullname: Diani, M.
  organization: Dipt. di. Ing. dell'Inf., Univ. di Pisa, Pisa, Italy
– sequence: 4
  givenname: G.
  surname: Corsini
  fullname: Corsini, G.
  organization: Dipt. di. Ing. dell'Inf., Univ. di Pisa, Pisa, Italy
BookMark eNo1UM1KAzEYjNiCtvYJRNgX2Jr_n6OUagsFxRY8lmTzpV2pmyWJh769K9a5DDMwMzATNOpiBwg9EDwnBJvHj9V6-7Z8384pxmYuqDbYiCs0IZxyzqVW9BrNjNL_WooRuqVE6FpSqcdo8pszmCutb9As5088gAvGNbtFu01s7KmyfZ-ibY5ViVVM5RgPsRvs_O1ybxuonc3gq2LTAUrloUBT2thVbVcdzz2k3A9GGgLtlz1AvkPjYE8ZZheeot3zcrdY1ZvXl_XiaVO3BpfaCyYlZdh75RQH7IlmKmBuAgENNPgAnjpMGmOFcNhpocAFIwNwaojkbIru_2pbANj3aRhP5_3lIPYD02pZnQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WHISPERS.2009.5289095
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISBN 1424446872
9781424446872
EndPage 4
ExternalDocumentID 5289095
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
AAJGR
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIL
RNS
ID FETCH-LOGICAL-i90t-d5366230dd7b74e0d1837f049f1e8e2fdfed2b01c9a55b0b857ebf96fe4291643
IEDL.DBID RIE
ISBN 9781424446865
1424446864
ISSN 2158-6268
IngestDate Wed Aug 27 02:36:15 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2009904788
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-d5366230dd7b74e0d1837f049f1e8e2fdfed2b01c9a55b0b857ebf96fe4291643
PageCount 4
ParticipantIDs ieee_primary_5289095
PublicationCentury 2000
PublicationDate 2009-Aug.
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-Aug.
PublicationDecade 2000
PublicationTitle 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
PublicationTitleAbbrev WHISPERS
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453483
ssj0001344044
Score 1.4790208
Snippet Airborne or satellite hyperspectral sensing has proven valuable in many target detection applications, thanks to the dense spectral sampling of the sensed...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms background subspace
Data mining
Detection algorithms
Hyperspectral imaging
Hyperspectral sensors
Image sampling
Image sensors
Interference
linear mixing model
local approach
Object detection
orthogonal subspace projection
Pixel
Satellites
Sub-pixel target detection
Title Local approach to orthogonal subspace-based target detection in hyperspectral images
URI https://ieeexplore.ieee.org/document/5289095
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKF5h4tIi3PDDiNmlsx5lRq4IAVbSIblUcn2mFSFCbDvDrOedRBGJgSyJZSSzrvu_uvrsj5DJWPsRSWhZqw9FBMRHTibbMJLF280S4tIXa4kEOn_jtVEwb5GpTCwMAhfgMOu6yyOWbLFm7UFlXuKxYJLbIVqhkWau1iacgNQl4BZVFfCVwne9cUhlBTTHk7aqu6-JSSV63e6ruRVXd43tR93l4Mx71H8dlN8vqpT-mrxTgM9gl9_Vnl5qT1846153k81dHx__-1x5pf5f50dEGwPZJA9IDsl2NRZ9_tMjkziEdrfuO0zyjLs2TvTj6Tldoc9DjBuaQ0NBSU04N5IW6K6WLlM7Ryy2LOZe4YPGGxmvVJpNBf3I9ZNUYBraIvJwZEUjkSJ4xoQ45eAaNQGjRsbA-KOhZY8H0tOcnUSyE9rQSIWgbSQsIdeiMBYekmWYpHBHqx8pGiJmelUgUbQ9XoAUI0AnXECJvOCYttzmz97LRxqzal5O_H5-SnTK149R4Z6SZL9dwjgwh1xfF0fgCAle0Rg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gHvDkBxi_3YNHCy3d3bZnAykKhEiN3Ei3OyvEWAyUg_56Z9uC0Xjw1jbZtN1s5r2ZeTNDyE3sOxALoS1PKoYOigosmUhtqSSWZp4IEzpXWwxF-MTuJ3xSIbfbWhgAyMVn0DSXeS5fLZK1CZW1uMmKBXyH7HLGGC-qtbYRFSQnLivBMo-wuKb3nUkrI6z5FjJ3f1PZxYQv2KbhU3nPy_oexw5az2FvPOo8jot-luVrf8xfyeGnu08Gmw8vVCevzXUmm8nnr56O__2zA9L4LvSjoy2EHZIKpEekVg5Gn33USdQ3WEc3ncdptqAm0bN4MQSertDqoM8NlsFCRQtVOVWQ5fqulM5TOkM_tyjnXOKC-Ruar1WDRN1OdBda5SAGax7YmaW4K5Al2Up50mNgKzQDnkbXQjvgQ1srDaotbScJYs6lLX3ugdSB0IBgh-6Ye0yq6SKFE0Kd2NcBoqatBVJF3cYVaANcdMMleMgcTkndbM70vWi1MS335ezvx9ekFkaD_rTfGz6ck70i0WO0eRekmi3XcIl8IZNX-TH5Aqlut5M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+First+Workshop+on+Hyperspectral+Image+and+Signal+Processing%3A+Evolution+in+Remote+Sensing&rft.atitle=Local+approach+to+orthogonal+subspace-based+target+detection+in+hyperspectral+images&rft.au=Matteoli%2C+S.&rft.au=Acito%2C+N.&rft.au=Diani%2C+M.&rft.au=Corsini%2C+G.&rft.date=2009-08-01&rft.pub=IEEE&rft.isbn=9781424446865&rft.issn=2158-6268&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FWHISPERS.2009.5289095&rft.externalDocID=5289095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-6268&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-6268&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-6268&client=summon