Parkinson Disease Detection Using Deep Neural Networks
Parkinson's disease (PD) is a neurodegenerative disorder, which is responsible for the deterioration of motor function due to loss of dopamine-producing brain cells i.e. neurons. Tremors, stiffness, slowness in movements, shaking, and impaired balance are some of the primary symptoms of PD. In...
Saved in:
Published in | International Conference on Contemporary Computing pp. 1 - 4 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2572-6129 |
DOI | 10.1109/IC3.2019.8844941 |
Cover
Abstract | Parkinson's disease (PD) is a neurodegenerative disorder, which is responsible for the deterioration of motor function due to loss of dopamine-producing brain cells i.e. neurons. Tremors, stiffness, slowness in movements, shaking, and impaired balance are some of the primary symptoms of PD. In this paper, two neural network based models namely, VGFR Spectrogram Detector and Voice Impairment Classifier have been introduced, which aim to help doctors and people in diagnosing disease at an early stage. An extensive empirical evaluation of CNNs (Convolutional Neural Networks) has been implemented on large-scale image classification of gait signals converted to spectrogram images and deep dense ANNs (Artificial Neural Networks) on the voice recordings, to predict the disease. The experimental results indicate that the proposed models outperformed the existing state of the arts in terms of accuracy. The classification accuracy on VGFR Spectrogram Detector is recorded as 88.1% while Voice Impairment Classifier has shown 89.15% accuracy. |
---|---|
AbstractList | Parkinson's disease (PD) is a neurodegenerative disorder, which is responsible for the deterioration of motor function due to loss of dopamine-producing brain cells i.e. neurons. Tremors, stiffness, slowness in movements, shaking, and impaired balance are some of the primary symptoms of PD. In this paper, two neural network based models namely, VGFR Spectrogram Detector and Voice Impairment Classifier have been introduced, which aim to help doctors and people in diagnosing disease at an early stage. An extensive empirical evaluation of CNNs (Convolutional Neural Networks) has been implemented on large-scale image classification of gait signals converted to spectrogram images and deep dense ANNs (Artificial Neural Networks) on the voice recordings, to predict the disease. The experimental results indicate that the proposed models outperformed the existing state of the arts in terms of accuracy. The classification accuracy on VGFR Spectrogram Detector is recorded as 88.1% while Voice Impairment Classifier has shown 89.15% accuracy. |
Author | Tripathi, Ashish Shivangi Johri, Anubhav |
Author_xml | – sequence: 1 surname: Shivangi fullname: Shivangi email: shivangigupta19dec@gmail.com organization: Jaypee Institute of Information Technology, Noida, India – sequence: 2 givenname: Anubhav surname: Johri fullname: Johri, Anubhav email: anubhavj22@gmail.com organization: Jaypee Institute of Information Technology, Noida, India – sequence: 3 givenname: Ashish surname: Tripathi fullname: Tripathi, Ashish email: ashish.tripathi@jiit.ac.in organization: Jaypee Institute of Information Technology, Noida, India |
BookMark | eNotj81Kw0AURkdRsK3dC27yAolzb-7czCwl9adQ1EVdl0lyI2NrUjIR8e0N2NXhO4sPzlxddH0nSt2AzgC0u1uXeYYaXGYtkSM4U3Mo0EJuHJhzNUNTYMqA7kotY_zUWudQFMbRTPGbH_ahi32XrEIUHyVZySj1GCbzHkP3MW05Ji_yPfjDhPGnH_bxWl22_hBleeJCbR8ftuVzunl9Wpf3mzQ4PaYNaYuiWYjZFS00VNXUmoq5sohQMTY1avYoYNlRBdQ03pJxumZsLeYLdft_G0RkdxzClx9-d6fK_A9lREYf |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/IC3.2019.8844941 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1728135915 9781728135915 |
EISSN | 2572-6129 |
EndPage | 4 |
ExternalDocumentID | 8844941 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
ID | FETCH-LOGICAL-i90t-d4082e06e46697f1d4bc4f5b66b8221b62dc206a2e18694b14dda84590c62f823 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:49:59 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-d4082e06e46697f1d4bc4f5b66b8221b62dc206a2e18694b14dda84590c62f823 |
PageCount | 4 |
ParticipantIDs | ieee_primary_8844941 |
PublicationCentury | 2000 |
PublicationDate | 2019-Aug. |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-Aug. |
PublicationDecade | 2010 |
PublicationTitle | International Conference on Contemporary Computing |
PublicationTitleAbbrev | IC3 |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003177594 |
Score | 1.992686 |
Snippet | Parkinson's disease (PD) is a neurodegenerative disorder, which is responsible for the deterioration of motor function due to loss of dopamine-producing brain... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | ANN Biomedical measurement Brain modeling CNN Detectors Diseases Gait Neural Neurodegenerative Neurons Parkinson PPMI Spectrogram UCI |
Title | Parkinson Disease Detection Using Deep Neural Networks |
URI | https://ieeexplore.ieee.org/document/8844941 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BTp5Qwfg7PXh0UEp_nkGCJhgPmHAja_uWGM0gOi7-9bQdYDQePK1rsmzpW_ttfd_3PoBb56m2XKgQAVZkXBciy9ENMhaXSwygIlPZxemTnLzwx7mYN-Bur4VBxEQ-w25sply-X7p13Crrac25iSr1A6VMrdXa76cEHFTC8F0mkprew3AQqVvxXUiX_fBPSfAxbsF0d-OaNfLWXVe2675-1WT875MdQedbqEee9xB0DA0sT6C1c2og24nbBhnFzUnnRUZ1RoaMsEosrJIk1kA4xxWJpTry93BI3PDPDszG97PhJNs6JmSvhlaZj-7RSCVyKY0q-p5bxwthpbThO6BvJfOOUZkzjEZU3Pa597nmwlAnWaHZ4BSa5bLEMyA2_EZIitpx4cI0dyZWrZFOGe1zpQp_Du04CotVXRNjsR2Ai7-7L-EwRqImzl1Bs_pY43UA88repChuAH4PnWA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4heNATKhh_u4NHB6P05xkkoEA8YMKNrO1bYjSD6Hbxr7ftAKPx4GndkmZL37pv7fu-7wHcGptITZlwESBZTGXG4hRNLyb-c4kOVHiwXZzO-OiZPizYogZ3Oy0MIgbyGbZ9M-Ty7cqUfqusIyWlyqvU95hbVYhKrbXbUXFIKJii21xkojrjfs-Tt_zbEDr-qKASAGTYgOn21hVv5LVdFrptPn-5Mv732Q6h9S3Vi552IHQENcyPobGt1RBtpm4TuJc3B6VXNKhyMtEAi8DDyqPAG3DnuI68WUf65g6BHf7Rgvnwft4fxZuaCfGLSorY-vrRmHCknCuRdS3VhmZMc67dn0BXc2INSXhK0JeiorpLrU0lZSoxnGSS9E6gnq9yPIVIu4UET1Aayoyb6EZ53xpuhJI2FSKzZ9D0o7BcV64Yy80AnP99-Qb2R_PpZDkZzx4v4MBHpaLRXUK9eC_xykF7oa9DRL8A9iOgsQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Contemporary+Computing&rft.atitle=Parkinson+Disease+Detection+Using+Deep+Neural+Networks&rft.au=Shivangi&rft.au=Johri%2C+Anubhav&rft.au=Tripathi%2C+Ashish&rft.date=2019-08-01&rft.pub=IEEE&rft.eissn=2572-6129&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FIC3.2019.8844941&rft.externalDocID=8844941 |