Parkinson Disease Detection Using Deep Neural Networks

Parkinson's disease (PD) is a neurodegenerative disorder, which is responsible for the deterioration of motor function due to loss of dopamine-producing brain cells i.e. neurons. Tremors, stiffness, slowness in movements, shaking, and impaired balance are some of the primary symptoms of PD. In...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Contemporary Computing pp. 1 - 4
Main Authors Shivangi, Johri, Anubhav, Tripathi, Ashish
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2019
Subjects
Online AccessGet full text
ISSN2572-6129
DOI10.1109/IC3.2019.8844941

Cover

Abstract Parkinson's disease (PD) is a neurodegenerative disorder, which is responsible for the deterioration of motor function due to loss of dopamine-producing brain cells i.e. neurons. Tremors, stiffness, slowness in movements, shaking, and impaired balance are some of the primary symptoms of PD. In this paper, two neural network based models namely, VGFR Spectrogram Detector and Voice Impairment Classifier have been introduced, which aim to help doctors and people in diagnosing disease at an early stage. An extensive empirical evaluation of CNNs (Convolutional Neural Networks) has been implemented on large-scale image classification of gait signals converted to spectrogram images and deep dense ANNs (Artificial Neural Networks) on the voice recordings, to predict the disease. The experimental results indicate that the proposed models outperformed the existing state of the arts in terms of accuracy. The classification accuracy on VGFR Spectrogram Detector is recorded as 88.1% while Voice Impairment Classifier has shown 89.15% accuracy.
AbstractList Parkinson's disease (PD) is a neurodegenerative disorder, which is responsible for the deterioration of motor function due to loss of dopamine-producing brain cells i.e. neurons. Tremors, stiffness, slowness in movements, shaking, and impaired balance are some of the primary symptoms of PD. In this paper, two neural network based models namely, VGFR Spectrogram Detector and Voice Impairment Classifier have been introduced, which aim to help doctors and people in diagnosing disease at an early stage. An extensive empirical evaluation of CNNs (Convolutional Neural Networks) has been implemented on large-scale image classification of gait signals converted to spectrogram images and deep dense ANNs (Artificial Neural Networks) on the voice recordings, to predict the disease. The experimental results indicate that the proposed models outperformed the existing state of the arts in terms of accuracy. The classification accuracy on VGFR Spectrogram Detector is recorded as 88.1% while Voice Impairment Classifier has shown 89.15% accuracy.
Author Tripathi, Ashish
Shivangi
Johri, Anubhav
Author_xml – sequence: 1
  surname: Shivangi
  fullname: Shivangi
  email: shivangigupta19dec@gmail.com
  organization: Jaypee Institute of Information Technology, Noida, India
– sequence: 2
  givenname: Anubhav
  surname: Johri
  fullname: Johri, Anubhav
  email: anubhavj22@gmail.com
  organization: Jaypee Institute of Information Technology, Noida, India
– sequence: 3
  givenname: Ashish
  surname: Tripathi
  fullname: Tripathi, Ashish
  email: ashish.tripathi@jiit.ac.in
  organization: Jaypee Institute of Information Technology, Noida, India
BookMark eNotj81Kw0AURkdRsK3dC27yAolzb-7czCwl9adQ1EVdl0lyI2NrUjIR8e0N2NXhO4sPzlxddH0nSt2AzgC0u1uXeYYaXGYtkSM4U3Mo0EJuHJhzNUNTYMqA7kotY_zUWudQFMbRTPGbH_ahi32XrEIUHyVZySj1GCbzHkP3MW05Ji_yPfjDhPGnH_bxWl22_hBleeJCbR8ftuVzunl9Wpf3mzQ4PaYNaYuiWYjZFS00VNXUmoq5sohQMTY1avYoYNlRBdQ03pJxumZsLeYLdft_G0RkdxzClx9-d6fK_A9lREYf
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IC3.2019.8844941
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1728135915
9781728135915
EISSN 2572-6129
EndPage 4
ExternalDocumentID 8844941
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-d4082e06e46697f1d4bc4f5b66b8221b62dc206a2e18694b14dda84590c62f823
IEDL.DBID RIE
IngestDate Wed Aug 27 02:49:59 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-d4082e06e46697f1d4bc4f5b66b8221b62dc206a2e18694b14dda84590c62f823
PageCount 4
ParticipantIDs ieee_primary_8844941
PublicationCentury 2000
PublicationDate 2019-Aug.
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-Aug.
PublicationDecade 2010
PublicationTitle International Conference on Contemporary Computing
PublicationTitleAbbrev IC3
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003177594
Score 1.992686
Snippet Parkinson's disease (PD) is a neurodegenerative disorder, which is responsible for the deterioration of motor function due to loss of dopamine-producing brain...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms ANN
Biomedical measurement
Brain modeling
CNN
Detectors
Diseases
Gait
Neural
Neurodegenerative
Neurons
Parkinson
PPMI
Spectrogram
UCI
Title Parkinson Disease Detection Using Deep Neural Networks
URI https://ieeexplore.ieee.org/document/8844941
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BTp5Qwfg7PXh0UEp_nkGCJhgPmHAja_uWGM0gOi7-9bQdYDQePK1rsmzpW_ttfd_3PoBb56m2XKgQAVZkXBciy9ENMhaXSwygIlPZxemTnLzwx7mYN-Bur4VBxEQ-w25sply-X7p13Crrac25iSr1A6VMrdXa76cEHFTC8F0mkprew3AQqVvxXUiX_fBPSfAxbsF0d-OaNfLWXVe2675-1WT875MdQedbqEee9xB0DA0sT6C1c2og24nbBhnFzUnnRUZ1RoaMsEosrJIk1kA4xxWJpTry93BI3PDPDszG97PhJNs6JmSvhlaZj-7RSCVyKY0q-p5bxwthpbThO6BvJfOOUZkzjEZU3Pa597nmwlAnWaHZ4BSa5bLEMyA2_EZIitpx4cI0dyZWrZFOGe1zpQp_Du04CotVXRNjsR2Ai7-7L-EwRqImzl1Bs_pY43UA88repChuAH4PnWA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4heNATKhh_u4NHB6P05xkkoEA8YMKNrO1bYjSD6Hbxr7ftAKPx4GndkmZL37pv7fu-7wHcGptITZlwESBZTGXG4hRNLyb-c4kOVHiwXZzO-OiZPizYogZ3Oy0MIgbyGbZ9M-Ty7cqUfqusIyWlyqvU95hbVYhKrbXbUXFIKJii21xkojrjfs-Tt_zbEDr-qKASAGTYgOn21hVv5LVdFrptPn-5Mv732Q6h9S3Vi552IHQENcyPobGt1RBtpm4TuJc3B6VXNKhyMtEAi8DDyqPAG3DnuI68WUf65g6BHf7Rgvnwft4fxZuaCfGLSorY-vrRmHCknCuRdS3VhmZMc67dn0BXc2INSXhK0JeiorpLrU0lZSoxnGSS9E6gnq9yPIVIu4UET1Aayoyb6EZ53xpuhJI2FSKzZ9D0o7BcV64Yy80AnP99-Qb2R_PpZDkZzx4v4MBHpaLRXUK9eC_xykF7oa9DRL8A9iOgsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Contemporary+Computing&rft.atitle=Parkinson+Disease+Detection+Using+Deep+Neural+Networks&rft.au=Shivangi&rft.au=Johri%2C+Anubhav&rft.au=Tripathi%2C+Ashish&rft.date=2019-08-01&rft.pub=IEEE&rft.eissn=2572-6129&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FIC3.2019.8844941&rft.externalDocID=8844941