Funtional vector quantization by neural maps

We propose the utilization of Sobolev-norms in unsupervised and supervised vector quantization for clustering and classification of functional data. Sobolev-norms differ from the usual Minkowski-norm by the incorporation of derivatives such that the functional shape is taken into account. This leads...

Full description

Saved in:
Bibliographic Details
Published in2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing pp. 1 - 4
Main Authors Villmann, T., Schleif, F.-M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2009
Subjects
Online AccessGet full text
ISBN9781424446865
1424446864
ISSN2158-6268
DOI10.1109/WHISPERS.2009.5289064

Cover

Abstract We propose the utilization of Sobolev-norms in unsupervised and supervised vector quantization for clustering and classification of functional data. Sobolev-norms differ from the usual Minkowski-norm by the incorporation of derivatives such that the functional shape is taken into account. This leads to a more appropriate modelling of functional data. As we figure out, the Sobolev-norm can easily plugged into prototype based adaptive vector quantization algorithms to process functional data adequately. We show for an example application in remote sensing data analysis that this methodology may lead to improved performance of the algorithms.
AbstractList We propose the utilization of Sobolev-norms in unsupervised and supervised vector quantization for clustering and classification of functional data. Sobolev-norms differ from the usual Minkowski-norm by the incorporation of derivatives such that the functional shape is taken into account. This leads to a more appropriate modelling of functional data. As we figure out, the Sobolev-norm can easily plugged into prototype based adaptive vector quantization algorithms to process functional data adequately. We show for an example application in remote sensing data analysis that this methodology may lead to improved performance of the algorithms.
Author Villmann, T.
Schleif, F.-M.
Author_xml – sequence: 1
  givenname: T.
  surname: Villmann
  fullname: Villmann, T.
  organization: Dept. of Math., Univ. of Appl. Sci. Mittweida, Mittweida, Germany
– sequence: 2
  givenname: F.-M.
  surname: Schleif
  fullname: Schleif, F.-M.
  organization: Dept. Med., Univ. Leipzig, Leipzig, Germany
BookMark eNo1T9tKw1AQXLEFm5ovECEfYOq55WTPo5TWFgqKEXwsJ9sNRNqk5iLUrzfFOi_DzDDLTgCjqq4Y4F6KmZTCPX6s1tnr4i2bKSHcLFHohDVXEEijjDEWU3UNoUvxX9tkBBMlE4ytsjiG4NxzwqSINxC27acYYBJtUE_gYdlXXVlXfh99M3V1E331fnB-_NmN8lNUcd8M6cEf21sYF37fcnjhKWTLxft8FW9entfzp01cOtHFRCZnJVD7QiOTUbRDy-SsKGh4UltyDgskS7STUrJOPebOEyuZY5LrKdz9XS2ZeXtsyoNvTtvLbv0LwulKzg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WHISPERS.2009.5289064
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès UT - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Mathematics
EISBN 1424446872
9781424446872
EndPage 4
ExternalDocumentID 5289064
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
AAJGR
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIL
RNS
ID FETCH-LOGICAL-i90t-cc4be2083af38ec42cd86ec960fc81436c998f8c6ccd111e37a8b9ace21b85b3
IEDL.DBID RIE
ISBN 9781424446865
1424446864
ISSN 2158-6268
IngestDate Wed Aug 27 02:36:14 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2009904788
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-cc4be2083af38ec42cd86ec960fc81436c998f8c6ccd111e37a8b9ace21b85b3
PageCount 4
ParticipantIDs ieee_primary_5289064
PublicationCentury 2000
PublicationDate 2009-Aug.
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-Aug.
PublicationDecade 2000
PublicationTitle 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
PublicationTitleAbbrev WHISPERS
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453483
ssj0001344044
Score 1.4757898
Snippet We propose the utilization of Sobolev-norms in unsupervised and supervised vector quantization for clustering and classification of functional data....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms classification
Clustering algorithms
Data analysis
Machine learning
Mathematics
Prototypes
Remote sensing
Shape
Sobolev-norms
Supervised learning
Training data
Vector quantization
Title Funtional vector quantization by neural maps
URI https://ieeexplore.ieee.org/document/5289064
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGH6DXNSLChi_s4NHCqPruu5sIGiCIaKRG1m7LhojoGwm-Ot925UZjQdv-zhsbZM-z_vxPAW4RBBlsaSS4NaXEOS3jEiR-oQykfUUp1GaWbfPWz58YDfTcFqDdqWF0Vrb5jPdMZe2lp8uVGFSZd3QVMU424KtKIpLrVaVT0FqEjAHlTa_EhjnO1NURlATBHm72Oi6GBecbeye3H3o1D09P-4-Dq8n4_7dpHSzdB_9cfqKBZ_BHow2v132nLx0ilx21OcvR8f_jmsfWt8yP29cAdgB1PS8AdvuWPSndQN2R5Wp66oJ7UHh2tO9D5vr994KXBcn5PTk2jPmmPj2NVmuWjAZ9O-vhsQdtkCeYz8nSjGpKfKxJAuEVoyqVHCtML7JFM5SwBXGZZlQXKkUt0cdRImQcaI07UkRyuAQ6vPFXB-ZXilf04xqDNljpsJQyCxFBh9JJCIG-46haWZgtizdNGZu8Cd_Pz6FnbJ-Y1ruzqCevxf6HGlALi_s-n8B1tmpNw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGH6DeEAvKmj8dgePlI-u27qzgQwFQgQjN7J2XTRGQNlM8Nf7diszGg_e9nHY2i19nvfjeQpwjSDKfEEFwaUvJMhvGRE8ahHKeNyWLvWiOHP7HLrBA7udOtMS1AstjFIqaz5TDX2Y1fKjhUx1qqzp6KqYy7Zg28GowsvVWkVGBcmJzQxYZhkWW3vf6bIywhonyNz5RtnFXO6yjeGTOXeMvqfd8puPQW886tyPcz9L89gf-69k8NPdg8HmxfOuk5dGmoiG_Pzl6fjfke3D4bfQzxoVEHYAJTWvQsVsjP60rsLuoLB1XdWg3k1Ng7r1kWX7rbcUv4yRclpibWl7TLz7Gi5XhzDudiY3ATHbLZBnv5UQKZlQFBlZGNtcSUZlxF0lMcKJJc6S7UqMzGIuXSkjXCCV7YVc-KFUtC24I-wjKM8Xc3Wsu6VaisZUYdDuM-k4XMQRcnhPIBXR6HcCNT0Ds2XupzEzgz_9-_IVVILJoD_r94Z3Z7CTV3N0A945lJP3VF0gKUjEZfYvfAH0iqyI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+First+Workshop+on+Hyperspectral+Image+and+Signal+Processing%3A+Evolution+in+Remote+Sensing&rft.atitle=Funtional+vector+quantization+by+neural+maps&rft.au=Villmann%2C+T.&rft.au=Schleif%2C+F.-M.&rft.date=2009-08-01&rft.pub=IEEE&rft.isbn=9781424446865&rft.issn=2158-6268&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FWHISPERS.2009.5289064&rft.externalDocID=5289064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-6268&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-6268&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-6268&client=summon