ICA-ANN method in fault diagnosis of rotating machinery

Independent Component Analysis (ICA) is a powerful tool for redundancy reduction and nongaussian data analysis. And, Artificial Neural Network (ANN), especially the Self-Organizing Map (SOM) based on unsupervised learning is a kind of excellent method for pattern clustering and recognition. By combi...

Full description

Saved in:
Bibliographic Details
Published in2012 IEEE International Conference on Computer Science and Automation Engineering Vol. 3; pp. 236 - 240
Main Authors Yongping Chang, Weidong Jiao
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2012
Subjects
Online AccessGet full text
ISBN1467300888
9781467300889
DOI10.1109/CSAE.2012.6272946

Cover

Abstract Independent Component Analysis (ICA) is a powerful tool for redundancy reduction and nongaussian data analysis. And, Artificial Neural Network (ANN), especially the Self-Organizing Map (SOM) based on unsupervised learning is a kind of excellent method for pattern clustering and recognition. By combining ICA with ANN, we proposed a novel compound neural network for fault diagnosis. First, two neural ICA algorithms were applied to fusion of multi-channel measurements by sensors. Moreover, a unit for further feature extraction was used to capture statistical features higher than second order, which embedded into the measurements. Second, certain a typical neural classifier such as Multi-Layer Perceptron (MLP), Radial Basis Function (RBF) or SOM was trained for the final pattern classification. The results from contrast experiments in fault diagnosis show that the proposed compound neural network with ICA based feature extraction can classify various fault patterns at considerable accuracy, and be constructed in simpler way, both of which imply its great potential in pattern classification.
AbstractList Independent Component Analysis (ICA) is a powerful tool for redundancy reduction and nongaussian data analysis. And, Artificial Neural Network (ANN), especially the Self-Organizing Map (SOM) based on unsupervised learning is a kind of excellent method for pattern clustering and recognition. By combining ICA with ANN, we proposed a novel compound neural network for fault diagnosis. First, two neural ICA algorithms were applied to fusion of multi-channel measurements by sensors. Moreover, a unit for further feature extraction was used to capture statistical features higher than second order, which embedded into the measurements. Second, certain a typical neural classifier such as Multi-Layer Perceptron (MLP), Radial Basis Function (RBF) or SOM was trained for the final pattern classification. The results from contrast experiments in fault diagnosis show that the proposed compound neural network with ICA based feature extraction can classify various fault patterns at considerable accuracy, and be constructed in simpler way, both of which imply its great potential in pattern classification.
Author Yongping Chang
Weidong Jiao
Author_xml – sequence: 1
  surname: Yongping Chang
  fullname: Yongping Chang
  email: changyp2850@sina.com
  organization: Net Center, Jiaxing Univ., Jiaxing, China
– sequence: 2
  surname: Weidong Jiao
  fullname: Weidong Jiao
  email: jiaowd1970@mail.zjxu.edu.cn
  organization: Dept. of Mech. Eng., Jiaxing Univ., Jiaxing, China
BookMark eNo1j01Lw0AYhFdU0Nb8APGyfyBx3924H8cQahVKPdh72Y9325VmI0k89N8bsM5lmGF4YBbkJvcZCXkEVgEw89x-NquKM-CV5IqbWl6RwigNtVSCMW3kNVn8B63vSDGOX2zWPJmLe6Le26Zstlva4XTsA02ZRvtzmmhI9pD7MY20j3ToJzulfKCd9ceUcTg_kNtoTyMWF1-S3etq176Vm4_1jNyUybCp9IIJJYMM-AIMTazBO-BBWOGdc9EhCA9OSaN1sCi1dUExZyA47mvPo1iSpz9sQsT995A6O5z3l6viF-jISPQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CSAE.2012.6272946
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467300896
1467300896
9781467300872
146730087X
EndPage 240
ExternalDocumentID 6272946
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-c30376d6de510e9f41cb12d3a3cbbbfbe13c1b76988dae68abd70b91db2c4c2f3
IEDL.DBID RIE
ISBN 1467300888
9781467300889
IngestDate Wed Aug 27 04:36:58 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-c30376d6de510e9f41cb12d3a3cbbbfbe13c1b76988dae68abd70b91db2c4c2f3
PageCount 5
ParticipantIDs ieee_primary_6272946
PublicationCentury 2000
PublicationDate 2012-May
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-May
PublicationDecade 2010
PublicationTitle 2012 IEEE International Conference on Computer Science and Automation Engineering
PublicationTitleAbbrev CSAE
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000781088
Score 1.4948523
Snippet Independent Component Analysis (ICA) is a powerful tool for redundancy reduction and nongaussian data analysis. And, Artificial Neural Network (ANN),...
SourceID ieee
SourceType Publisher
StartPage 236
SubjectTerms Accuracy
Compound neural network
Fault diagnosis
Feature extraction
Independent component analysis (ICA)
Neural networks
Pattern classification
Redundancy reduction
Support vector machine classification
Training
Title ICA-ANN method in fault diagnosis of rotating machinery
URI https://ieeexplore.ieee.org/document/6272946
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNDh7NdrObZpNjKS1VaBGs0FvJ5CFF3UrdPeivN9ldK4oHb0kOIU--ZOabbxC6UlTbRA8Sojy4EaaUIcr_Q0gGKtX-jAB1wd4xm_PpA7tdDpYtdL2LhbHWVuQzG4Vi5cs3G10GU1mfJ_4pyHgbtTPB61itnT0liNb4G1PFbvEgwi6E-JJ0auqy8WrSWPZH98NxIHYlUdPpj-wqFbhM9tHsa1g1p-QpKguI9Mcvxcb_jvsA9b7D-PDdDqAOUcvmXZTdjIZkOJ_jOnc0XufYqfK5wKYm3a3f8Mbh7Sa46PNH_FKRLe32vYcWk_FiNCVN9gSylnFBtMemjBturL91VjpGNdDEpH4LAMCBpammkHEphFGWCwUmi0FSA4lmOnHpEerkm9weI0xTxWNwsWJMMpdwacA4K5UA5VKduhPUDXNevdb6GKtmuqd_N5-hvbDuNWnwHHWKbWkvPLAXcFnt6CcFoZ_C
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAC1CK-8cCI0zhxnHisqlYttBESRepW-RNVQIJKMsCvx05CEYiBzfZg2Tpbz7579w6AK46lDmQUIG7BDRHOFeL2H4JiwUNpz4jAxvk7ZikdP5CbRbRogetNLozWuiKfac81q1i-ymXpXGU9GtinIKFbYDsihER1ttbGo-Jka-ydqbK3qJNhT5LkS9Sp6bMmrol91hvc94eO2hV4zbQ_6qtU8DLaA7OvhdWskievLIQnP35pNv535fug-53IB-82EHUAWjrrgHgy6KN-msK6ejRcZdDw8rmAqqbdrd5gbuA6d0H67BG-VHRLvX7vgvloOB-MUVM_Aa2YXyBp0Smmiipt751mhmApcKBCawQhhBEahxKLmLIkUVzThAsV-4JhJQJJZGDCQ9DO8kwfAYhDTn1hfE4IIyagTAllNOOJ4CaUoTkGHbfn5WutkLFstnvy9_Al2BnPZ9PldJLenoJdZ4OaQngG2sW61OcW5gtxUVn3E5nIow8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+International+Conference+on+Computer+Science+and+Automation+Engineering&rft.atitle=ICA-ANN+method+in+fault+diagnosis+of+rotating+machinery&rft.au=Yongping+Chang&rft.au=Weidong+Jiao&rft.date=2012-05-01&rft.pub=IEEE&rft.isbn=9781467300889&rft.volume=3&rft.spage=236&rft.epage=240&rft_id=info:doi/10.1109%2FCSAE.2012.6272946&rft.externalDocID=6272946
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467300889/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467300889/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467300889/sc.gif&client=summon&freeimage=true