Learning Bayesian Network Structure from Large-Scale Datasets

Bayesian network is one of the most classical and effective models in big data graph algorithms. Aiming at the problem of learning Bayesian network structure from large-scale datasets, a novel algorithm with the combination of Information theory, Tabu search and Akaike Information Criterion (AIC) ca...

Full description

Saved in:
Bibliographic Details
Published in2016 International Conference on Advanced Cloud and Big Data (CBD) pp. 258 - 264
Main Authors Yu Hong, Xiaoling Xia, Jiajin Le, Xiangdong Zhou
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2016
Subjects
Online AccessGet full text
DOI10.1109/CBD.2016.052

Cover

Abstract Bayesian network is one of the most classical and effective models in big data graph algorithms. Aiming at the problem of learning Bayesian network structure from large-scale datasets, a novel algorithm with the combination of Information theory, Tabu search and Akaike Information Criterion (AIC) called ITA is proposed. Firstly, a dimensionreduction algorithm based on information theory is used to filter non-target variables. The variables closely related to the target are picked as the vertexes in Bayesian network. Then choosing AIC as the scoring method and Tabu Search as the heuristic algorithm, a new learning algorithm is adopted to build the global optimal structure. Experimental results demonstrate that ITA algorithm can obtain core causal relationships from largescale datasets in certain area accurately and construct clean and straightforward Bayesian network structure at a lower time cost. Therefore, ITA is an effective and efficient big data graph algorithm for learning Bayesian network structure from largescale datasets.
AbstractList Bayesian network is one of the most classical and effective models in big data graph algorithms. Aiming at the problem of learning Bayesian network structure from large-scale datasets, a novel algorithm with the combination of Information theory, Tabu search and Akaike Information Criterion (AIC) called ITA is proposed. Firstly, a dimensionreduction algorithm based on information theory is used to filter non-target variables. The variables closely related to the target are picked as the vertexes in Bayesian network. Then choosing AIC as the scoring method and Tabu Search as the heuristic algorithm, a new learning algorithm is adopted to build the global optimal structure. Experimental results demonstrate that ITA algorithm can obtain core causal relationships from largescale datasets in certain area accurately and construct clean and straightforward Bayesian network structure at a lower time cost. Therefore, ITA is an effective and efficient big data graph algorithm for learning Bayesian network structure from largescale datasets.
Author Xiangdong Zhou
Yu Hong
Xiaoling Xia
Jiajin Le
Author_xml – sequence: 1
  surname: Yu Hong
  fullname: Yu Hong
  email: andrehong@mail.dhu.edu.cn
  organization: Sch. of Comput. Sci. & Technol., Donghua Univ., Shanghai, China
– sequence: 2
  surname: Xiaoling Xia
  fullname: Xiaoling Xia
  email: sherlysha@dhu.edu.cn
  organization: Sch. of Comput. Sci. & Technol., Donghua Univ., Shanghai, China
– sequence: 3
  surname: Jiajin Le
  fullname: Jiajin Le
  email: lejiajin@dhu.edu.cn
  organization: Sch. of Comput. Sci. & Technol., Donghua Univ., Shanghai, China
– sequence: 4
  surname: Xiangdong Zhou
  fullname: Xiangdong Zhou
  email: xdzhou@fudan.edu.cn
  organization: Sch. of Comput. Sci., Fudan Univ., Shanghai, China
BookMark eNotzLtOwzAUAFAjwUBbNjYW_0CCfRO_Bgaa8pKiMrR7detcVxatgxxXqH_PANPZzoxdpzERY_dS1FIK99gtVzUIqWuh4IrNpBJONNoYfcueesKcYjrwJV5oipj4msrPmL_4puSzL-dMPOTxxHvMB6o2Ho_EV1hwojIt2E3A40R3_87Z9vVl271X_efbR_fcV9GJUnkYBm-UMFJp522rldZ7DdZaZ4W3e6PDAOhtIwBc8NKbVuoBWoAwoHVNM2cPf20kot13jifMl52xUoG0zS-jw0Jo
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CBD.2016.052
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès ENAC - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509036776
9781509036776
EndPage 264
ExternalDocumentID 7815218
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-c2ddc75071569c846566b62888980c8b76fd2ac830229fc1c7416d2422fda8933
IEDL.DBID RIE
IngestDate Wed Jun 26 19:26:04 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-c2ddc75071569c846566b62888980c8b76fd2ac830229fc1c7416d2422fda8933
PageCount 7
ParticipantIDs ieee_primary_7815218
PublicationCentury 2000
PublicationDate 2016-Aug.
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-Aug.
PublicationDecade 2010
PublicationTitle 2016 International Conference on Advanced Cloud and Big Data (CBD)
PublicationTitleAbbrev CBD
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6271083
Snippet Bayesian network is one of the most classical and effective models in big data graph algorithms. Aiming at the problem of learning Bayesian network structure...
SourceID ieee
SourceType Publisher
StartPage 258
SubjectTerms AIC
Bayesian network structure learning
Big data
big data graph algorithm
information theory
large-scale datasets
Tabu Search
Title Learning Bayesian Network Structure from Large-Scale Datasets
URI https://ieeexplore.ieee.org/document/7815218
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB3anjyptOI3OXh0t9nv7MFLW0sRLUIr9FaSyayIsBXdHvTXm9mtVcSDlxBySSY5vEny3huAC_7YLdDdTsLCNTHJxOMs3DOBTXQmDRvGMNtimk4e4ptFsmjB5VYLQ0Q1-Yx87tZ_-XaFa34q62eK0Ua1oZ2ptNFqbbnseX84GDFVK_Ulq4h-1EqpoWK8C3dfkzQMkWd_XRkfP375L_53FXvQ-xblifst3OxDi8ouXG38UR_FQL8TCyLFtCF2i1ntDLt-JcESEnHLlG9v5o6ExEhXDryqtx7Mx9fz4cTbVETwnnJZeRhaixlncEmao2Krs9RwvWCVK4nKZGlhQ41s6RXmBQbI6ZZ1IBwWVrvEJDqATrkq6RCEUSYOKLCaL8daoo4yqawkLKKYkhiPoMuRL18az4vlJujjv4dPYId3viHGnULHBUhnDqwrc16f0idHBJWl
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsAEqEV844GRpE7qJM7A0paqQFshtUjdKn9cEEJKEaQD_Hp8SSkIMbBYlhf7dMM72--9A7igj93MuNtJmLlBII88qsI9HdhIJVyTYQyxLcbx4EHczqJZDS7XWhhELMln6NO0_Mu3C7Okp7JWIglt5AZsRkKIqFJrrdnsaavb6RFZK_Y56Yh-dEspwaK_A6OvbSqOyLO_LLRvPn45MP73HLvQ_Jblsfs14OxBDfMGXK0cUh9ZR70jSSLZuKJ2s0npDbt8RUYiEjYk0rc3cUlB1lOFg6_irQnT_vW0O_BWPRG8p5QXngmtNQnVcFGcGklmZ7GmjsEyldxIncSZDZUhU68wzUxgqOCyDobDzCpXmrT3oZ4vcjwApqUWAQZW0fVYcaPaCZeWo8naAiNhDqFBkc9fKteL-Sroo7-Xz2FrMB0N58Ob8d0xbFMWKprcCdRdsHjqoLvQZ2XGPgFOc5jy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+International+Conference+on+Advanced+Cloud+and+Big+Data+%28CBD%29&rft.atitle=Learning+Bayesian+Network+Structure+from+Large-Scale+Datasets&rft.au=Yu+Hong&rft.au=Xiaoling+Xia&rft.au=Jiajin+Le&rft.au=Xiangdong+Zhou&rft.date=2016-08-01&rft.pub=IEEE&rft.spage=258&rft.epage=264&rft_id=info:doi/10.1109%2FCBD.2016.052&rft.externalDocID=7815218