Learning Bayesian Network Structure from Large-Scale Datasets
Bayesian network is one of the most classical and effective models in big data graph algorithms. Aiming at the problem of learning Bayesian network structure from large-scale datasets, a novel algorithm with the combination of Information theory, Tabu search and Akaike Information Criterion (AIC) ca...
Saved in:
| Published in | 2016 International Conference on Advanced Cloud and Big Data (CBD) pp. 258 - 264 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.08.2016
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/CBD.2016.052 |
Cover
| Abstract | Bayesian network is one of the most classical and effective models in big data graph algorithms. Aiming at the problem of learning Bayesian network structure from large-scale datasets, a novel algorithm with the combination of Information theory, Tabu search and Akaike Information Criterion (AIC) called ITA is proposed. Firstly, a dimensionreduction algorithm based on information theory is used to filter non-target variables. The variables closely related to the target are picked as the vertexes in Bayesian network. Then choosing AIC as the scoring method and Tabu Search as the heuristic algorithm, a new learning algorithm is adopted to build the global optimal structure. Experimental results demonstrate that ITA algorithm can obtain core causal relationships from largescale datasets in certain area accurately and construct clean and straightforward Bayesian network structure at a lower time cost. Therefore, ITA is an effective and efficient big data graph algorithm for learning Bayesian network structure from largescale datasets. |
|---|---|
| AbstractList | Bayesian network is one of the most classical and effective models in big data graph algorithms. Aiming at the problem of learning Bayesian network structure from large-scale datasets, a novel algorithm with the combination of Information theory, Tabu search and Akaike Information Criterion (AIC) called ITA is proposed. Firstly, a dimensionreduction algorithm based on information theory is used to filter non-target variables. The variables closely related to the target are picked as the vertexes in Bayesian network. Then choosing AIC as the scoring method and Tabu Search as the heuristic algorithm, a new learning algorithm is adopted to build the global optimal structure. Experimental results demonstrate that ITA algorithm can obtain core causal relationships from largescale datasets in certain area accurately and construct clean and straightforward Bayesian network structure at a lower time cost. Therefore, ITA is an effective and efficient big data graph algorithm for learning Bayesian network structure from largescale datasets. |
| Author | Xiangdong Zhou Yu Hong Xiaoling Xia Jiajin Le |
| Author_xml | – sequence: 1 surname: Yu Hong fullname: Yu Hong email: andrehong@mail.dhu.edu.cn organization: Sch. of Comput. Sci. & Technol., Donghua Univ., Shanghai, China – sequence: 2 surname: Xiaoling Xia fullname: Xiaoling Xia email: sherlysha@dhu.edu.cn organization: Sch. of Comput. Sci. & Technol., Donghua Univ., Shanghai, China – sequence: 3 surname: Jiajin Le fullname: Jiajin Le email: lejiajin@dhu.edu.cn organization: Sch. of Comput. Sci. & Technol., Donghua Univ., Shanghai, China – sequence: 4 surname: Xiangdong Zhou fullname: Xiangdong Zhou email: xdzhou@fudan.edu.cn organization: Sch. of Comput. Sci., Fudan Univ., Shanghai, China |
| BookMark | eNotzLtOwzAUAFAjwUBbNjYW_0CCfRO_Bgaa8pKiMrR7detcVxatgxxXqH_PANPZzoxdpzERY_dS1FIK99gtVzUIqWuh4IrNpBJONNoYfcueesKcYjrwJV5oipj4msrPmL_4puSzL-dMPOTxxHvMB6o2Ho_EV1hwojIt2E3A40R3_87Z9vVl271X_efbR_fcV9GJUnkYBm-UMFJp522rldZ7DdZaZ4W3e6PDAOhtIwBc8NKbVuoBWoAwoHVNM2cPf20kot13jifMl52xUoG0zS-jw0Jo |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CBD.2016.052 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings Accès ENAC - IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1509036776 9781509036776 |
| EndPage | 264 |
| ExternalDocumentID | 7815218 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i90t-c2ddc75071569c846566b62888980c8b76fd2ac830229fc1c7416d2422fda8933 |
| IEDL.DBID | RIE |
| IngestDate | Wed Jun 26 19:26:04 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-c2ddc75071569c846566b62888980c8b76fd2ac830229fc1c7416d2422fda8933 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_7815218 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Aug. |
| PublicationDateYYYYMMDD | 2016-08-01 |
| PublicationDate_xml | – month: 08 year: 2016 text: 2016-Aug. |
| PublicationDecade | 2010 |
| PublicationTitle | 2016 International Conference on Advanced Cloud and Big Data (CBD) |
| PublicationTitleAbbrev | CBD |
| PublicationYear | 2016 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.6271083 |
| Snippet | Bayesian network is one of the most classical and effective models in big data graph algorithms. Aiming at the problem of learning Bayesian network structure... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 258 |
| SubjectTerms | AIC Bayesian network structure learning Big data big data graph algorithm information theory large-scale datasets Tabu Search |
| Title | Learning Bayesian Network Structure from Large-Scale Datasets |
| URI | https://ieeexplore.ieee.org/document/7815218 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB3anjyptOI3OXh0t9nv7MFLW0sRLUIr9FaSyayIsBXdHvTXm9mtVcSDlxBySSY5vEny3huAC_7YLdDdTsLCNTHJxOMs3DOBTXQmDRvGMNtimk4e4ptFsmjB5VYLQ0Q1-Yx87tZ_-XaFa34q62eK0Ua1oZ2ptNFqbbnseX84GDFVK_Ulq4h-1EqpoWK8C3dfkzQMkWd_XRkfP375L_53FXvQ-xblifst3OxDi8ouXG38UR_FQL8TCyLFtCF2i1ntDLt-JcESEnHLlG9v5o6ExEhXDryqtx7Mx9fz4cTbVETwnnJZeRhaixlncEmao2Krs9RwvWCVK4nKZGlhQ41s6RXmBQbI6ZZ1IBwWVrvEJDqATrkq6RCEUSYOKLCaL8daoo4yqawkLKKYkhiPoMuRL18az4vlJujjv4dPYId3viHGnULHBUhnDqwrc16f0idHBJWl |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsAEqEV844GRpE7qJM7A0paqQFshtUjdKn9cEEJKEaQD_Hp8SSkIMbBYlhf7dMM72--9A7igj93MuNtJmLlBII88qsI9HdhIJVyTYQyxLcbx4EHczqJZDS7XWhhELMln6NO0_Mu3C7Okp7JWIglt5AZsRkKIqFJrrdnsaavb6RFZK_Y56Yh-dEspwaK_A6OvbSqOyLO_LLRvPn45MP73HLvQ_Jblsfs14OxBDfMGXK0cUh9ZR70jSSLZuKJ2s0npDbt8RUYiEjYk0rc3cUlB1lOFg6_irQnT_vW0O_BWPRG8p5QXngmtNQnVcFGcGklmZ7GmjsEyldxIncSZDZUhU68wzUxgqOCyDobDzCpXmrT3oZ4vcjwApqUWAQZW0fVYcaPaCZeWo8naAiNhDqFBkc9fKteL-Sroo7-Xz2FrMB0N58Ob8d0xbFMWKprcCdRdsHjqoLvQZ2XGPgFOc5jy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+International+Conference+on+Advanced+Cloud+and+Big+Data+%28CBD%29&rft.atitle=Learning+Bayesian+Network+Structure+from+Large-Scale+Datasets&rft.au=Yu+Hong&rft.au=Xiaoling+Xia&rft.au=Jiajin+Le&rft.au=Xiangdong+Zhou&rft.date=2016-08-01&rft.pub=IEEE&rft.spage=258&rft.epage=264&rft_id=info:doi/10.1109%2FCBD.2016.052&rft.externalDocID=7815218 |