Ant Colony Algorithm and Fuzzy Neural Network-based Intelligent Dispatching Algorithm of An Elevator Group Control System

To improve the performance of elevator group control systems (EGCS), an intelligent dispatching method based on ant colony algorithm and fuzzy neural network is presented. An elevator group control system based on fuzzy neural network adapts to various traffic flow modes. Using ant colony algorithm...

Full description

Saved in:
Bibliographic Details
Published in2007 IEEE International Conference on Control and Automation pp. 2306 - 2310
Main Authors Jianchang Liu, Yiyang Liu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2007
Subjects
Online AccessGet full text
ISBN9781424408177
1424408172
ISSN1948-3449
DOI10.1109/ICCA.2007.4376773

Cover

Abstract To improve the performance of elevator group control systems (EGCS), an intelligent dispatching method based on ant colony algorithm and fuzzy neural network is presented. An elevator group control system based on fuzzy neural network adapts to various traffic flow modes. Using ant colony algorithm to optimize the weights of fuzzy neural network before training with BP algorithm can solve the problem that convergence of weights is easy to be trapped in local optimal values when trained just with BP algorithm. This intelligent dispatching algorithm makes the weights of fuzzy neural network more precise and reasonable. These weights greatly affect the performance of an EGCS. The results of simulation show that ant colony algorithm and fuzzy neural network greatly improves the performance of an EGCS. Its average waiting time is obviously shorter than that of the EGCS that is only based on fuzzy neural network.
AbstractList To improve the performance of elevator group control systems (EGCS), an intelligent dispatching method based on ant colony algorithm and fuzzy neural network is presented. An elevator group control system based on fuzzy neural network adapts to various traffic flow modes. Using ant colony algorithm to optimize the weights of fuzzy neural network before training with BP algorithm can solve the problem that convergence of weights is easy to be trapped in local optimal values when trained just with BP algorithm. This intelligent dispatching algorithm makes the weights of fuzzy neural network more precise and reasonable. These weights greatly affect the performance of an EGCS. The results of simulation show that ant colony algorithm and fuzzy neural network greatly improves the performance of an EGCS. Its average waiting time is obviously shorter than that of the EGCS that is only based on fuzzy neural network.
Author Jianchang Liu
Yiyang Liu
Author_xml – sequence: 1
  surname: Jianchang Liu
  fullname: Jianchang Liu
  organization: Northeastern Univ., Shenyang
– sequence: 2
  surname: Yiyang Liu
  fullname: Yiyang Liu
BookMark eNpVkM1OAjEAhGvEREQewHjpCyz2b_tz3KyAJEQPcifd3S5US0u6RbM8vZvIQU-TOcw3mbkDIx-8AeABoxnGSD2tyrKYEYTEjFHBhaBXYKqExIwwhiSW7PqfF2IExlgxmVHG1C2Ydt0HQggjmXOExqAvfIJlcMH3sHC7EG3aH6D2DVyczucevppT1G6Q9B3iZ1bpzjRw5ZNxzu7MkH223VGnem_97g8gtLDwcO7Ml04hwmUMp-NQ41MMDr73XTKHe3DTateZ6UUnYLOYb8qXbP22XJXFOrMKpazGNckrnjdNi3NeSdYgM0yjshJ1SzmRnCiJhFKCsJopXMs8H-ZhxiUhTEg6AY-_WGuM2R6jPejYby_f0R9tzWF3
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCA.2007.4376773
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424408184
1424408180
EndPage 2310
ExternalDocumentID 4376773
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-c1c25b65ddf156b84d0e42438b7cf362862980799724c491c8550011468224783
IEDL.DBID RIE
ISBN 9781424408177
1424408172
ISSN 1948-3449
IngestDate Wed Aug 27 02:11:43 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-c1c25b65ddf156b84d0e42438b7cf362862980799724c491c8550011468224783
PageCount 5
ParticipantIDs ieee_primary_4376773
PublicationCentury 2000
PublicationDate 2007-May
PublicationDateYYYYMMDD 2007-05-01
PublicationDate_xml – month: 05
  year: 2007
  text: 2007-May
PublicationDecade 2000
PublicationTitle 2007 IEEE International Conference on Control and Automation
PublicationTitleAbbrev ICCA
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001085600
ssj0001763998
Score 1.4540144
Snippet To improve the performance of elevator group control systems (EGCS), an intelligent dispatching method based on ant colony algorithm and fuzzy neural network...
SourceID ieee
SourceType Publisher
StartPage 2306
SubjectTerms ant colony algorithm
Communication system traffic control
Control systems
Dispatching
elevator group control
Elevators
Fuzzy control
fuzzy neural network
Fuzzy neural networks
Fuzzy systems
intelligent dispatching
Intelligent networks
Intelligent systems
Neural networks
Title Ant Colony Algorithm and Fuzzy Neural Network-based Intelligent Dispatching Algorithm of An Elevator Group Control System
URI https://ieeexplore.ieee.org/document/4376773
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTrDwaBFveWDEbR6OnYxRaNUiFTEUqVsVPwIVJUGVg9T-emwnfYAYmBJnSOJTcuc7f993ANxxnMlQ6jQ1YpIhTEWAGJEpciLppgHWf5c0dcjxExm-4MdpMG2A-y0XRkppwWeya07tXr4oeGlKZT1spEeo3wRNGpKKq7Wrp-i1A6ml5uyYmthrmXARDpGPcbThdekoSL2N3FM9pvWOp-tEvVGSxJW4Yf3AH51XbOAZHIHx5pUrvMl7t1Ssy9e_1Bz_O6dj0NlR_ODzNnidgIbMT8HhnjphG6ziXMFEO8d8BePFa7Gcq7cPmOYCDsr1egWNrke60AcLJEcmHgo42kp8Kvgw1-5KWbDm3g2KDMY57C_kl8n3oS1-waRCzMNKQL0DJoP-JBmiulMDmkeOQtzlXsBIIESm00EWYuFIbVg_ZJRnviG_elHoUMPRxRxHLjcqaiYTIwbDSkP_DLTyIpfnAJLUS4V2KjQMhOmOxgLMCMNeJlK9suPOBWgbG84-Ky2OWW2-y78vX4GDqhZrAIrXoKWWpbzRiwjFbu3X8w30H76v
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGYCFR4t444GRtGlix_EYhVYttBVDkbpV8SNQURJUJUjtr8d20geIgSlxhiQ-JXe-8_d9B8AdR7H0pUpTKZPMQkRgi3kysmwqWxFG6u-Sug45GHrdF_Q4xuMKuF9zYaSUBnwmG_rU7OWLlOe6VNZEWnqEuDtgFyOEcMHW2lRU1OrBK8XmzJjo6Gu4cBT5losQXTG7VBwkzkrwqRyTcs-zZdNmLwyDQt6wfOSP3ism9HQOwWD10gXi5L2RZ6zBl7_0HP87qyNQ35D84PM6fB2DikxOwMGWPmENLIIkg6Fyj8kCBrPXdD7N3j5glAjYyZfLBdTKHtFMHQyU3NIRUcDeWuQzgw9T5bAyA9fcukEawyCB7Zn80hk_NOUvGBaYeVhIqNfBqNMehV2r7NVgTamdWbzFHcw8LESsEkLmI2FLZVjXZ4THrqa_OtS3iWbpIo5oi2sdNZ2LeRrFSnz3FFSTNJFnAHqREwnlVoiPhe6PxjBiHkNOLCK1tuP2OahpG04-CzWOSWm-i78v34K97mjQn_R7w6dLsF9UZjVc8QpUs3kur9WSImM35kv6BiVDwfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+International+Conference+on+Control+and+Automation&rft.atitle=Ant+Colony+Algorithm+and+Fuzzy+Neural+Network-based+Intelligent+Dispatching+Algorithm+of+An+Elevator+Group+Control+System&rft.au=Jianchang+Liu&rft.au=Yiyang+Liu&rft.date=2007-05-01&rft.pub=IEEE&rft.isbn=9781424408177&rft.issn=1948-3449&rft.spage=2306&rft.epage=2310&rft_id=info:doi/10.1109%2FICCA.2007.4376773&rft.externalDocID=4376773
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-3449&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-3449&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-3449&client=summon