Ant Colony Algorithm and Fuzzy Neural Network-based Intelligent Dispatching Algorithm of An Elevator Group Control System
To improve the performance of elevator group control systems (EGCS), an intelligent dispatching method based on ant colony algorithm and fuzzy neural network is presented. An elevator group control system based on fuzzy neural network adapts to various traffic flow modes. Using ant colony algorithm...
Saved in:
| Published in | 2007 IEEE International Conference on Control and Automation pp. 2306 - 2310 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.05.2007
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 9781424408177 1424408172 |
| ISSN | 1948-3449 |
| DOI | 10.1109/ICCA.2007.4376773 |
Cover
| Abstract | To improve the performance of elevator group control systems (EGCS), an intelligent dispatching method based on ant colony algorithm and fuzzy neural network is presented. An elevator group control system based on fuzzy neural network adapts to various traffic flow modes. Using ant colony algorithm to optimize the weights of fuzzy neural network before training with BP algorithm can solve the problem that convergence of weights is easy to be trapped in local optimal values when trained just with BP algorithm. This intelligent dispatching algorithm makes the weights of fuzzy neural network more precise and reasonable. These weights greatly affect the performance of an EGCS. The results of simulation show that ant colony algorithm and fuzzy neural network greatly improves the performance of an EGCS. Its average waiting time is obviously shorter than that of the EGCS that is only based on fuzzy neural network. |
|---|---|
| AbstractList | To improve the performance of elevator group control systems (EGCS), an intelligent dispatching method based on ant colony algorithm and fuzzy neural network is presented. An elevator group control system based on fuzzy neural network adapts to various traffic flow modes. Using ant colony algorithm to optimize the weights of fuzzy neural network before training with BP algorithm can solve the problem that convergence of weights is easy to be trapped in local optimal values when trained just with BP algorithm. This intelligent dispatching algorithm makes the weights of fuzzy neural network more precise and reasonable. These weights greatly affect the performance of an EGCS. The results of simulation show that ant colony algorithm and fuzzy neural network greatly improves the performance of an EGCS. Its average waiting time is obviously shorter than that of the EGCS that is only based on fuzzy neural network. |
| Author | Jianchang Liu Yiyang Liu |
| Author_xml | – sequence: 1 surname: Jianchang Liu fullname: Jianchang Liu organization: Northeastern Univ., Shenyang – sequence: 2 surname: Yiyang Liu fullname: Yiyang Liu |
| BookMark | eNpVkM1OAjEAhGvEREQewHjpCyz2b_tz3KyAJEQPcifd3S5US0u6RbM8vZvIQU-TOcw3mbkDIx-8AeABoxnGSD2tyrKYEYTEjFHBhaBXYKqExIwwhiSW7PqfF2IExlgxmVHG1C2Ydt0HQggjmXOExqAvfIJlcMH3sHC7EG3aH6D2DVyczucevppT1G6Q9B3iZ1bpzjRw5ZNxzu7MkH223VGnem_97g8gtLDwcO7Ml04hwmUMp-NQ41MMDr73XTKHe3DTateZ6UUnYLOYb8qXbP22XJXFOrMKpazGNckrnjdNi3NeSdYgM0yjshJ1SzmRnCiJhFKCsJopXMs8H-ZhxiUhTEg6AY-_WGuM2R6jPejYby_f0R9tzWF3 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICCA.2007.4376773 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781424408184 1424408180 |
| EndPage | 2310 |
| ExternalDocumentID | 4376773 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AARBI AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-i90t-c1c25b65ddf156b84d0e42438b7cf362862980799724c491c8550011468224783 |
| IEDL.DBID | RIE |
| ISBN | 9781424408177 1424408172 |
| ISSN | 1948-3449 |
| IngestDate | Wed Aug 27 02:11:43 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-c1c25b65ddf156b84d0e42438b7cf362862980799724c491c8550011468224783 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_4376773 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-May |
| PublicationDateYYYYMMDD | 2007-05-01 |
| PublicationDate_xml | – month: 05 year: 2007 text: 2007-May |
| PublicationDecade | 2000 |
| PublicationTitle | 2007 IEEE International Conference on Control and Automation |
| PublicationTitleAbbrev | ICCA |
| PublicationYear | 2007 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001085600 ssj0001763998 |
| Score | 1.4540144 |
| Snippet | To improve the performance of elevator group control systems (EGCS), an intelligent dispatching method based on ant colony algorithm and fuzzy neural network... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2306 |
| SubjectTerms | ant colony algorithm Communication system traffic control Control systems Dispatching elevator group control Elevators Fuzzy control fuzzy neural network Fuzzy neural networks Fuzzy systems intelligent dispatching Intelligent networks Intelligent systems Neural networks |
| Title | Ant Colony Algorithm and Fuzzy Neural Network-based Intelligent Dispatching Algorithm of An Elevator Group Control System |
| URI | https://ieeexplore.ieee.org/document/4376773 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTrDwaBFveWDEbR6OnYxRaNUiFTEUqVsVPwIVJUGVg9T-emwnfYAYmBJnSOJTcuc7f993ANxxnMlQ6jQ1YpIhTEWAGJEpciLppgHWf5c0dcjxExm-4MdpMG2A-y0XRkppwWeya07tXr4oeGlKZT1spEeo3wRNGpKKq7Wrp-i1A6ml5uyYmthrmXARDpGPcbThdekoSL2N3FM9pvWOp-tEvVGSxJW4Yf3AH51XbOAZHIHx5pUrvMl7t1Ssy9e_1Bz_O6dj0NlR_ODzNnidgIbMT8HhnjphG6ziXMFEO8d8BePFa7Gcq7cPmOYCDsr1egWNrke60AcLJEcmHgo42kp8Kvgw1-5KWbDm3g2KDMY57C_kl8n3oS1-waRCzMNKQL0DJoP-JBmiulMDmkeOQtzlXsBIIESm00EWYuFIbVg_ZJRnviG_elHoUMPRxRxHLjcqaiYTIwbDSkP_DLTyIpfnAJLUS4V2KjQMhOmOxgLMCMNeJlK9suPOBWgbG84-Ky2OWW2-y78vX4GDqhZrAIrXoKWWpbzRiwjFbu3X8w30H76v |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGYCFR4t444GRtGlix_EYhVYttBVDkbpV8SNQURJUJUjtr8d20geIgSlxhiQ-JXe-8_d9B8AdR7H0pUpTKZPMQkRgi3kysmwqWxFG6u-Sug45GHrdF_Q4xuMKuF9zYaSUBnwmG_rU7OWLlOe6VNZEWnqEuDtgFyOEcMHW2lRU1OrBK8XmzJjo6Gu4cBT5losQXTG7VBwkzkrwqRyTcs-zZdNmLwyDQt6wfOSP3ism9HQOwWD10gXi5L2RZ6zBl7_0HP87qyNQ35D84PM6fB2DikxOwMGWPmENLIIkg6Fyj8kCBrPXdD7N3j5glAjYyZfLBdTKHtFMHQyU3NIRUcDeWuQzgw9T5bAyA9fcukEawyCB7Zn80hk_NOUvGBaYeVhIqNfBqNMehV2r7NVgTamdWbzFHcw8LESsEkLmI2FLZVjXZ4THrqa_OtS3iWbpIo5oi2sdNZ2LeRrFSnz3FFSTNJFnAHqREwnlVoiPhe6PxjBiHkNOLCK1tuP2OahpG04-CzWOSWm-i78v34K97mjQn_R7w6dLsF9UZjVc8QpUs3kur9WSImM35kv6BiVDwfw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+International+Conference+on+Control+and+Automation&rft.atitle=Ant+Colony+Algorithm+and+Fuzzy+Neural+Network-based+Intelligent+Dispatching+Algorithm+of+An+Elevator+Group+Control+System&rft.au=Jianchang+Liu&rft.au=Yiyang+Liu&rft.date=2007-05-01&rft.pub=IEEE&rft.isbn=9781424408177&rft.issn=1948-3449&rft.spage=2306&rft.epage=2310&rft_id=info:doi/10.1109%2FICCA.2007.4376773&rft.externalDocID=4376773 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-3449&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-3449&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-3449&client=summon |