Self-adaptive monte carlo for single-robot and multi-robot localization

In order to achieve the autonomy of mobile robots, effective localization is a necessary prerequisite. In this paper, we propose an improved Monte Carlo localization using self-adaptive samples, abbreviated as SAMCL. This algorithm is able to solve the multi-robot localization problem as well as the...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE International Conference on Automation and Logistics pp. 1927 - 1933
Main Authors Lei Zhang, Zapata, R., Lepinay, P.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2009
Subjects
Online AccessGet full text
ISBN9781424447947
1424447941
ISSN2161-8151
DOI10.1109/ICAL.2009.5262621

Cover

Abstract In order to achieve the autonomy of mobile robots, effective localization is a necessary prerequisite. In this paper, we propose an improved Monte Carlo localization using self-adaptive samples, abbreviated as SAMCL. This algorithm is able to solve the multi-robot localization problem as well as the single-robot localization problem. By employing a pre-caching technique to reduce the on-line computational burden, SAMCL is more efficient than regular MCL. We define the concept of Similar Energy Region (SER), which is a set of grid cells having similar energy with the robot in the robot space. By distributing global samples in SER instead of distributing randomly in the map, SAMCL obtains a better performance in localization. Thanks to self-adaptive samples that can automatically separate themselves into a global sample set and a local sample set according to need, SAMCL can solve position tracking, global localization and the kidnapped robot problem together. SAMCL can be extended to handle multi-robot localization through a Position Mapping (PM) algorithm. This algorithm enables one robot to calculate its possible positions according to positions of other robots and mutual relations between each other. The validity and the efficiency of our algorithm are demonstrated by experiments carried out with different intentions. Extensive experiment results are also given in this paper.
AbstractList In order to achieve the autonomy of mobile robots, effective localization is a necessary prerequisite. In this paper, we propose an improved Monte Carlo localization using self-adaptive samples, abbreviated as SAMCL. This algorithm is able to solve the multi-robot localization problem as well as the single-robot localization problem. By employing a pre-caching technique to reduce the on-line computational burden, SAMCL is more efficient than regular MCL. We define the concept of Similar Energy Region (SER), which is a set of grid cells having similar energy with the robot in the robot space. By distributing global samples in SER instead of distributing randomly in the map, SAMCL obtains a better performance in localization. Thanks to self-adaptive samples that can automatically separate themselves into a global sample set and a local sample set according to need, SAMCL can solve position tracking, global localization and the kidnapped robot problem together. SAMCL can be extended to handle multi-robot localization through a Position Mapping (PM) algorithm. This algorithm enables one robot to calculate its possible positions according to positions of other robots and mutual relations between each other. The validity and the efficiency of our algorithm are demonstrated by experiments carried out with different intentions. Extensive experiment results are also given in this paper.
Author Zapata, R.
Lepinay, P.
Lei Zhang
Author_xml – sequence: 1
  surname: Lei Zhang
  fullname: Lei Zhang
  organization: Lab. d'Inf., de Robot. et de Microelectron. de Montpellier, Univ. Montpellier II, Montpellier, France
– sequence: 2
  givenname: R.
  surname: Zapata
  fullname: Zapata, R.
  organization: Lab. d'Inf., de Robot. et de Microelectron. de Montpellier, Univ. Montpellier II, Montpellier, France
– sequence: 3
  givenname: P.
  surname: Lepinay
  fullname: Lepinay, P.
  organization: Lab. d'Inf., de Robot. et de Microelectron. de Montpellier, Univ. Montpellier II, Montpellier, France
BookMark eNpVUM1Kw0AYXLEF25oHEC95gdTv25_sfkcpWoWCB3svm81GVjbZkkRBn96W5iJzGGZghmGWbNalzjN2h7BGBHp43Tzu1hyA1oqXJ-AVy0gblFxKqUnJ639a6hlbcCyxMKhwzpbnKIESmm5YNgyfAICgiTQt2Pbdx6awtT2O4dvnbepGnzvbx5Q3qc-H0H1EX_SpSmNuuzpvv-IYJh2TszH82jGk7pbNGxsHn028Yvvnp_3mpdi9bc_7i0AwFg6kNbzxZSWUwdqQK0tuSjj5woIjUraCGhvHjRNAAsAial15LaVCocWK3V9qg_f-cOxDa_ufw3SL-ANcelJf
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICAL.2009.5262621
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424447954
142444795X
EndPage 1933
ExternalDocumentID 5262621
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-c04a82fe6b3581d89c662860c043a0c995ab0d1fc28c309300a1177be74451373
IEDL.DBID RIE
ISBN 9781424447947
1424447941
ISSN 2161-8151
IngestDate Wed Aug 27 02:28:28 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2009905379
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-c04a82fe6b3581d89c662860c043a0c995ab0d1fc28c309300a1177be74451373
PageCount 7
ParticipantIDs ieee_primary_5262621
PublicationCentury 2000
PublicationDate 2009-Aug.
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-Aug.
PublicationDecade 2000
PublicationTitle 2009 IEEE International Conference on Automation and Logistics
PublicationTitleAbbrev ICAL
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001079979
ssj0000453144
Score 1.4828147
Snippet In order to achieve the autonomy of mobile robots, effective localization is a necessary prerequisite. In this paper, we propose an improved Monte Carlo...
SourceID ieee
SourceType Publisher
StartPage 1927
SubjectTerms Computational complexity
Delay
Localization
Logistics
Mobile robots
Monte Carlo methods
multi-robot
Orbital robotics
position mapping
Robot kinematics
Robot sensing systems
Robotics and automation
Runtime
self-adaptive Monte Carlo localization
similar energy region
Title Self-adaptive monte carlo for single-robot and multi-robot localization
URI https://ieeexplore.ieee.org/document/5262621
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKT3BhaRG7fOCIW8dZfUaUCqkIiSL1VnmZSIiSVFV64evxOG5ZxIFbbFlyYkd5LzPzngm5LsFo4EayHErFEm0KpmIRMSVMkrp_XCk1ipMnj9n4JXmYpbMOudlqYQDAF5_BAC99Lt_WZo2hsmEqHP1G1fhOXmStVmsbT3HUJI4CVPn4CnfzeKs94UgNKxyybXRdaKoebeyeQjsPGc-IyyEaEbROlmHCHyeveOAZ7ZPJ5pbbepO3wbrRA_Pxy83xv890QPpfEj_6tAWvQ9KB6ojsfXMn7JH7Z1iUTFm1xE8ifUcfK2rUalFTx3QpBhkWwFa1rhuqKkt9bWJoe4gMEs8-mY7uprdjFs5dYK-SN8zwRBWihEyjN5otpMlQv8pdf6zctspUaW6j0ojCYB6Vc4WZXw05mp3FeXxMulVdwQmhOk7cmNwKE4EDPuU2xIpEYWGIYyKlOSU9XJH5snXWmIfFOPu7-5zstrkcLL-7IN1mtYZLRwkafeXfhU9ggK2J
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELUqGICFjxbxjQdG3DqO0yQzohRoKySK1K2ynYuEKElVpQu_Hp_jlg8xsMWWJSd2lPdyd--ZkKscjAZuUhZDrpjUJmEqFAFTwsjI_uOmqUZx8nDU7b_Ih0k0aZDrtRYGAFzxGbTx0uXys9IsMVTWiYSl36ga34yklFGt1lpHVCw5CQMPVi7Cwu1MzmxPWFrDEottK2UX2qoHK8Mn3459zjPgaQetCGovSz_lj7NXHPT0dslwddN1xclbe1nptvn45ef436faI60vkR99WsPXPmlAcUB2vvkTNsndM8xypjI1x48ifUcnK2rUYlZSy3UphhlmwBalLiuqioy66kTfdiDpRZ4tMu7djm_6zJ-8wF5TXjHDpUpEDl2N7mhZkpouKli57Q-V3dg0UppnQW5EYjCTyrnC3K-GGO3Owjg8JBtFWcARoTqUdkycCROAhT5lNyQTUmFpiOUiuTkmTVyR6bz21pj6xTj5u_uSbPXHw8F0cD96PCXbdWYHi_HOyEa1WMK5JQiVvnDvxSew9LDW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+International+Conference+on+Automation+and+Logistics&rft.atitle=Self-adaptive+monte+carlo+for+single-robot+and+multi-robot+localization&rft.au=Lei+Zhang&rft.au=Zapata%2C+R.&rft.au=Lepinay%2C+P.&rft.date=2009-08-01&rft.pub=IEEE&rft.isbn=9781424447947&rft.issn=2161-8151&rft.spage=1927&rft.epage=1933&rft_id=info:doi/10.1109%2FICAL.2009.5262621&rft.externalDocID=5262621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-8151&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-8151&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-8151&client=summon