Self-adaptive monte carlo for single-robot and multi-robot localization
In order to achieve the autonomy of mobile robots, effective localization is a necessary prerequisite. In this paper, we propose an improved Monte Carlo localization using self-adaptive samples, abbreviated as SAMCL. This algorithm is able to solve the multi-robot localization problem as well as the...
        Saved in:
      
    
          | Published in | 2009 IEEE International Conference on Automation and Logistics pp. 1927 - 1933 | 
|---|---|
| Main Authors | , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.08.2009
     | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 9781424447947 1424447941  | 
| ISSN | 2161-8151 | 
| DOI | 10.1109/ICAL.2009.5262621 | 
Cover
| Abstract | In order to achieve the autonomy of mobile robots, effective localization is a necessary prerequisite. In this paper, we propose an improved Monte Carlo localization using self-adaptive samples, abbreviated as SAMCL. This algorithm is able to solve the multi-robot localization problem as well as the single-robot localization problem. By employing a pre-caching technique to reduce the on-line computational burden, SAMCL is more efficient than regular MCL. We define the concept of Similar Energy Region (SER), which is a set of grid cells having similar energy with the robot in the robot space. By distributing global samples in SER instead of distributing randomly in the map, SAMCL obtains a better performance in localization. Thanks to self-adaptive samples that can automatically separate themselves into a global sample set and a local sample set according to need, SAMCL can solve position tracking, global localization and the kidnapped robot problem together. SAMCL can be extended to handle multi-robot localization through a Position Mapping (PM) algorithm. This algorithm enables one robot to calculate its possible positions according to positions of other robots and mutual relations between each other. The validity and the efficiency of our algorithm are demonstrated by experiments carried out with different intentions. Extensive experiment results are also given in this paper. | 
    
|---|---|
| AbstractList | In order to achieve the autonomy of mobile robots, effective localization is a necessary prerequisite. In this paper, we propose an improved Monte Carlo localization using self-adaptive samples, abbreviated as SAMCL. This algorithm is able to solve the multi-robot localization problem as well as the single-robot localization problem. By employing a pre-caching technique to reduce the on-line computational burden, SAMCL is more efficient than regular MCL. We define the concept of Similar Energy Region (SER), which is a set of grid cells having similar energy with the robot in the robot space. By distributing global samples in SER instead of distributing randomly in the map, SAMCL obtains a better performance in localization. Thanks to self-adaptive samples that can automatically separate themselves into a global sample set and a local sample set according to need, SAMCL can solve position tracking, global localization and the kidnapped robot problem together. SAMCL can be extended to handle multi-robot localization through a Position Mapping (PM) algorithm. This algorithm enables one robot to calculate its possible positions according to positions of other robots and mutual relations between each other. The validity and the efficiency of our algorithm are demonstrated by experiments carried out with different intentions. Extensive experiment results are also given in this paper. | 
    
| Author | Zapata, R. Lepinay, P. Lei Zhang  | 
    
| Author_xml | – sequence: 1 surname: Lei Zhang fullname: Lei Zhang organization: Lab. d'Inf., de Robot. et de Microelectron. de Montpellier, Univ. Montpellier II, Montpellier, France – sequence: 2 givenname: R. surname: Zapata fullname: Zapata, R. organization: Lab. d'Inf., de Robot. et de Microelectron. de Montpellier, Univ. Montpellier II, Montpellier, France – sequence: 3 givenname: P. surname: Lepinay fullname: Lepinay, P. organization: Lab. d'Inf., de Robot. et de Microelectron. de Montpellier, Univ. Montpellier II, Montpellier, France  | 
    
| BookMark | eNpVUM1Kw0AYXLEF25oHEC95gdTv25_sfkcpWoWCB3svm81GVjbZkkRBn96W5iJzGGZghmGWbNalzjN2h7BGBHp43Tzu1hyA1oqXJ-AVy0gblFxKqUnJ639a6hlbcCyxMKhwzpbnKIESmm5YNgyfAICgiTQt2Pbdx6awtT2O4dvnbepGnzvbx5Q3qc-H0H1EX_SpSmNuuzpvv-IYJh2TszH82jGk7pbNGxsHn028Yvvnp_3mpdi9bc_7i0AwFg6kNbzxZSWUwdqQK0tuSjj5woIjUraCGhvHjRNAAsAial15LaVCocWK3V9qg_f-cOxDa_ufw3SL-ANcelJf | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/ICAL.2009.5262621 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISBN | 9781424447954 142444795X  | 
    
| EndPage | 1933 | 
    
| ExternalDocumentID | 5262621 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL  | 
    
| ID | FETCH-LOGICAL-i90t-c04a82fe6b3581d89c662860c043a0c995ab0d1fc28c309300a1177be74451373 | 
    
| IEDL.DBID | RIE | 
    
| ISBN | 9781424447947 1424447941  | 
    
| ISSN | 2161-8151 | 
    
| IngestDate | Wed Aug 27 02:28:28 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| LCCN | 2009905379 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i90t-c04a82fe6b3581d89c662860c043a0c995ab0d1fc28c309300a1177be74451373 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | ieee_primary_5262621 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2009-Aug. | 
    
| PublicationDateYYYYMMDD | 2009-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2009 text: 2009-Aug.  | 
    
| PublicationDecade | 2000 | 
    
| PublicationTitle | 2009 IEEE International Conference on Automation and Logistics | 
    
| PublicationTitleAbbrev | ICAL | 
    
| PublicationYear | 2009 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0001079979 ssj0000453144  | 
    
| Score | 1.4828147 | 
    
| Snippet | In order to achieve the autonomy of mobile robots, effective localization is a necessary prerequisite. In this paper, we propose an improved Monte Carlo... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1927 | 
    
| SubjectTerms | Computational complexity Delay Localization Logistics Mobile robots Monte Carlo methods multi-robot Orbital robotics position mapping Robot kinematics Robot sensing systems Robotics and automation Runtime self-adaptive Monte Carlo localization similar energy region  | 
    
| Title | Self-adaptive monte carlo for single-robot and multi-robot localization | 
    
| URI | https://ieeexplore.ieee.org/document/5262621 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKT3BhaRG7fOCIW8dZfUaUCqkIiSL1VnmZSIiSVFV64evxOG5ZxIFbbFlyYkd5LzPzngm5LsFo4EayHErFEm0KpmIRMSVMkrp_XCk1ipMnj9n4JXmYpbMOudlqYQDAF5_BAC99Lt_WZo2hsmEqHP1G1fhOXmStVmsbT3HUJI4CVPn4CnfzeKs94UgNKxyybXRdaKoebeyeQjsPGc-IyyEaEbROlmHCHyeveOAZ7ZPJ5pbbepO3wbrRA_Pxy83xv890QPpfEj_6tAWvQ9KB6ojsfXMn7JH7Z1iUTFm1xE8ifUcfK2rUalFTx3QpBhkWwFa1rhuqKkt9bWJoe4gMEs8-mY7uprdjFs5dYK-SN8zwRBWihEyjN5otpMlQv8pdf6zctspUaW6j0ojCYB6Vc4WZXw05mp3FeXxMulVdwQmhOk7cmNwKE4EDPuU2xIpEYWGIYyKlOSU9XJH5snXWmIfFOPu7-5zstrkcLL-7IN1mtYZLRwkafeXfhU9ggK2J | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELUqGICFjxbxjQdG3DqO0yQzohRoKySK1K2ynYuEKElVpQu_Hp_jlg8xsMWWJSd2lPdyd--ZkKscjAZuUhZDrpjUJmEqFAFTwsjI_uOmqUZx8nDU7b_Ih0k0aZDrtRYGAFzxGbTx0uXys9IsMVTWiYSl36ga34yklFGt1lpHVCw5CQMPVi7Cwu1MzmxPWFrDEottK2UX2qoHK8Mn3459zjPgaQetCGovSz_lj7NXHPT0dslwddN1xclbe1nptvn45ef436faI60vkR99WsPXPmlAcUB2vvkTNsndM8xypjI1x48ifUcnK2rUYlZSy3UphhlmwBalLiuqioy66kTfdiDpRZ4tMu7djm_6zJ-8wF5TXjHDpUpEDl2N7mhZkpouKli57Q-V3dg0UppnQW5EYjCTyrnC3K-GGO3Owjg8JBtFWcARoTqUdkycCROAhT5lNyQTUmFpiOUiuTkmTVyR6bz21pj6xTj5u_uSbPXHw8F0cD96PCXbdWYHi_HOyEa1WMK5JQiVvnDvxSew9LDW | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+International+Conference+on+Automation+and+Logistics&rft.atitle=Self-adaptive+monte+carlo+for+single-robot+and+multi-robot+localization&rft.au=Lei+Zhang&rft.au=Zapata%2C+R.&rft.au=Lepinay%2C+P.&rft.date=2009-08-01&rft.pub=IEEE&rft.isbn=9781424447947&rft.issn=2161-8151&rft.spage=1927&rft.epage=1933&rft_id=info:doi/10.1109%2FICAL.2009.5262621&rft.externalDocID=5262621 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-8151&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-8151&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-8151&client=summon |