Spatio-Temporal Neural Network with Dilated Retrospective Convolution for Short-Time Change Detection

Change detection remains to be challenging due to variability of real-world conditions. Existing methods usually require a long-time observation, from tens to hundreds of video frames as reference, to build a robust background model for separating changing foreground from background. The performance...

Full description

Saved in:
Bibliographic Details
Published in2019 7th International Conference on Information, Communication and Networks (ICICN) pp. 213 - 218
Main Authors Chen, Chao, Zhang, Sheng
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2019
Subjects
Online AccessGet full text
ISBN1728104254
9781728104256
DOI10.1109/ICICN.2019.8834948

Cover

Abstract Change detection remains to be challenging due to variability of real-world conditions. Existing methods usually require a long-time observation, from tens to hundreds of video frames as reference, to build a robust background model for separating changing foreground from background. The performances of these methods decline severely when subject to quite fewer reference frames. In this paper, we focus on the task of short-time change detection, which aims to detect changing foreground with only a few preceding reference frames. We exploit the capability of spatial-temporal neural network in learning and representing change-cued information, and propose a novel dilated retrospective convolution which enables feature extraction between the current frame and all reference frames in a retrospective manner, and uses spatially dilated kernel for flexibly expanded inter-frame field-of-views. Trained end-to-end on hard samples from various context, our architecture performs accurate in perceiving changes and effective in combating noises in complex scenarios. Extensive evaluation on CDnet demonstrates substantial superiority of our proposed method.
AbstractList Change detection remains to be challenging due to variability of real-world conditions. Existing methods usually require a long-time observation, from tens to hundreds of video frames as reference, to build a robust background model for separating changing foreground from background. The performances of these methods decline severely when subject to quite fewer reference frames. In this paper, we focus on the task of short-time change detection, which aims to detect changing foreground with only a few preceding reference frames. We exploit the capability of spatial-temporal neural network in learning and representing change-cued information, and propose a novel dilated retrospective convolution which enables feature extraction between the current frame and all reference frames in a retrospective manner, and uses spatially dilated kernel for flexibly expanded inter-frame field-of-views. Trained end-to-end on hard samples from various context, our architecture performs accurate in perceiving changes and effective in combating noises in complex scenarios. Extensive evaluation on CDnet demonstrates substantial superiority of our proposed method.
Author Zhang, Sheng
Chen, Chao
Author_xml – sequence: 1
  givenname: Chao
  surname: Chen
  fullname: Chen, Chao
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Sheng
  surname: Zhang
  fullname: Zhang, Sheng
  organization: Advanced Sensor and Integrated System Lab, Tsinghua University, Shenzhen, China
BookMark eNpFUN1KwzAYjagXbvoCepMXaM2XpG1yKZ3Owpjgej_S9qsNdk3Jsg3f3soGXh0O54fDmZGbwQ1IyCOwGIDp5yIv8nXMGehYKSG1VFdkBhlXwCRP-fU_SeQdwc1ognVRibvRedPTNR7OEE7Of9OTDR1d2N4EbOgnBu_2I9bBHpHmbji6_jClB9o6Tzed8yEq7W6SOjN8IV1g-PO64Z7ctqbf48MF56R8ey3z92j1sSzyl1VkNQtRZQAlS-pKamOA80oCa4XiNTAhK1GlMmum6ZimNUsYIhpohcx0qhpIgBsxJ0_nWjuJ29HbnfE_28sL4hfynFWk
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICICN.2019.8834948
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728104262
9781728104263
EndPage 218
ExternalDocumentID 8834948
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-ba1e405cb49aa122b410f382c1034b3b647d728e66c050eeea1f347968d1512a3
IEDL.DBID RIE
ISBN 1728104254
9781728104256
IngestDate Wed Jun 26 19:28:45 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-ba1e405cb49aa122b410f382c1034b3b647d728e66c050eeea1f347968d1512a3
PageCount 6
ParticipantIDs ieee_primary_8834948
PublicationCentury 2000
PublicationDate 2019-April
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-April
PublicationDecade 2010
PublicationTitle 2019 7th International Conference on Information, Communication and Networks (ICICN)
PublicationTitleAbbrev ICICN
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7016686
Snippet Change detection remains to be challenging due to variability of real-world conditions. Existing methods usually require a long-time observation, from tens to...
SourceID ieee
SourceType Publisher
StartPage 213
SubjectTerms Convolution
dilated retrospective convolution
Feature extraction
Kernel
Neural networks
short-time change detection
Task analysis
Testing
Training
Title Spatio-Temporal Neural Network with Dilated Retrospective Convolution for Short-Time Change Detection
URI https://ieeexplore.ieee.org/document/8834948
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Akyc1YHynB48W2n10u2eQiAnECCbcSJ-RSMCQxYO_3k53F6Lx4Gm7e2i609nO7PT7viJ0F_mPyMd1SlRuoFrFNJEiciR1kRB-bTCphdLAeMIfX5OneTpvoPs9F8ZaG8BntgvNsJdvNnoHpbKeECCmIpqo6d3swNXKIsHA95JKwqm-5zVJhua9UX_UnwCSC1wj9PLjOJUQTYbHaFyPowSRvHd3herqr18Sjf8d6AnqHHh7-HkfkU5Rw67byE4DaJrMShGqFQY9jnAJAHAMlVg8WK580mnwiy22m5p9iX23n5VrYp_c4umbT9YJsEZwyUrAA1sELNe6g2bDh1n_kVSHK5BlTguiJLM-V9MqyaVkUaQSRl0sIs1onKhY8SQz3o6Wc01T6l9QMgekUy4M5AgyPkOt9WZtzxGWzrBMO8pcZhPnYsmNMsxw5f8tmWbsArXBQouPUj5jURnn8u_HV-gIZqkEx1yjVrHd2Rsf9wt1Gyb8GyCFrIs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4QD3pSA8Zve_Bood1H151BAgrEyEy4kX5GIgFDhgd_vW23QTQePO3j0HRvu71P3z3PUwDuAvsS2byOkUiVq1YRiTgLDIpNwJj9NqhYu9LAaEz7r9HjNJ7WwP1WC6O19uQz3XKn_l--WsmNK5W1GXNmKmwP7Md2VcF2aq0kYMTNvqg0caquaSWTwWl70Bl0xo7L5SaHb-fHhio-n_SOwKjqSUEjeW9tctGSX79MGv_b1WPQ3Cn34PM2J52Aml42gJ542jTKChuqBXSOHP7gKeDQ1WJhd76wsFPBF52vV5X-EtpmP8vJCS28hZM3C9eR043AQpcAuzr3bK5lE2S9h6zTR-X2Cmie4hwJTrRFa1JEKeckCEREsAlZIAkOIxEKGiXKxlFTKnGM7QNyYpzslDLlUAIPT0F9uVrqMwC5USSRBhOT6MiYkFMlFFFU2NUlkYScg4aL0OyjMNCYlcG5-Pv2LTjoZ6PhbDgYP12CQzdiBVXmCtTz9UZfWxSQixs_-N9kyK_e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+7th+International+Conference+on+Information%2C+Communication+and+Networks+%28ICICN%29&rft.atitle=Spatio-Temporal+Neural+Network+with+Dilated+Retrospective+Convolution+for+Short-Time+Change+Detection&rft.au=Chen%2C+Chao&rft.au=Zhang%2C+Sheng&rft.date=2019-04-01&rft.pub=IEEE&rft.isbn=1728104254&rft.spage=213&rft.epage=218&rft_id=info:doi/10.1109%2FICICN.2019.8834948&rft.externalDocID=8834948
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728104256/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728104256/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728104256/sc.gif&client=summon&freeimage=true