Spatio-Temporal Neural Network with Dilated Retrospective Convolution for Short-Time Change Detection
Change detection remains to be challenging due to variability of real-world conditions. Existing methods usually require a long-time observation, from tens to hundreds of video frames as reference, to build a robust background model for separating changing foreground from background. The performance...
Saved in:
Published in | 2019 7th International Conference on Information, Communication and Networks (ICICN) pp. 213 - 218 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2019
|
Subjects | |
Online Access | Get full text |
ISBN | 1728104254 9781728104256 |
DOI | 10.1109/ICICN.2019.8834948 |
Cover
Abstract | Change detection remains to be challenging due to variability of real-world conditions. Existing methods usually require a long-time observation, from tens to hundreds of video frames as reference, to build a robust background model for separating changing foreground from background. The performances of these methods decline severely when subject to quite fewer reference frames. In this paper, we focus on the task of short-time change detection, which aims to detect changing foreground with only a few preceding reference frames. We exploit the capability of spatial-temporal neural network in learning and representing change-cued information, and propose a novel dilated retrospective convolution which enables feature extraction between the current frame and all reference frames in a retrospective manner, and uses spatially dilated kernel for flexibly expanded inter-frame field-of-views. Trained end-to-end on hard samples from various context, our architecture performs accurate in perceiving changes and effective in combating noises in complex scenarios. Extensive evaluation on CDnet demonstrates substantial superiority of our proposed method. |
---|---|
AbstractList | Change detection remains to be challenging due to variability of real-world conditions. Existing methods usually require a long-time observation, from tens to hundreds of video frames as reference, to build a robust background model for separating changing foreground from background. The performances of these methods decline severely when subject to quite fewer reference frames. In this paper, we focus on the task of short-time change detection, which aims to detect changing foreground with only a few preceding reference frames. We exploit the capability of spatial-temporal neural network in learning and representing change-cued information, and propose a novel dilated retrospective convolution which enables feature extraction between the current frame and all reference frames in a retrospective manner, and uses spatially dilated kernel for flexibly expanded inter-frame field-of-views. Trained end-to-end on hard samples from various context, our architecture performs accurate in perceiving changes and effective in combating noises in complex scenarios. Extensive evaluation on CDnet demonstrates substantial superiority of our proposed method. |
Author | Zhang, Sheng Chen, Chao |
Author_xml | – sequence: 1 givenname: Chao surname: Chen fullname: Chen, Chao organization: Department of Electronic Engineering, Tsinghua University, Beijing, China – sequence: 2 givenname: Sheng surname: Zhang fullname: Zhang, Sheng organization: Advanced Sensor and Integrated System Lab, Tsinghua University, Shenzhen, China |
BookMark | eNpFUN1KwzAYjagXbvoCepMXaM2XpG1yKZ3Owpjgej_S9qsNdk3Jsg3f3soGXh0O54fDmZGbwQ1IyCOwGIDp5yIv8nXMGehYKSG1VFdkBhlXwCRP-fU_SeQdwc1ognVRibvRedPTNR7OEE7Of9OTDR1d2N4EbOgnBu_2I9bBHpHmbji6_jClB9o6Tzed8yEq7W6SOjN8IV1g-PO64Z7ctqbf48MF56R8ey3z92j1sSzyl1VkNQtRZQAlS-pKamOA80oCa4XiNTAhK1GlMmum6ZimNUsYIhpohcx0qhpIgBsxJ0_nWjuJ29HbnfE_28sL4hfynFWk |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICICN.2019.8834948 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1728104262 9781728104263 |
EndPage | 218 |
ExternalDocumentID | 8834948 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-ba1e405cb49aa122b410f382c1034b3b647d728e66c050eeea1f347968d1512a3 |
IEDL.DBID | RIE |
ISBN | 1728104254 9781728104256 |
IngestDate | Wed Jun 26 19:28:45 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-ba1e405cb49aa122b410f382c1034b3b647d728e66c050eeea1f347968d1512a3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_8834948 |
PublicationCentury | 2000 |
PublicationDate | 2019-April |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-April |
PublicationDecade | 2010 |
PublicationTitle | 2019 7th International Conference on Information, Communication and Networks (ICICN) |
PublicationTitleAbbrev | ICICN |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7016686 |
Snippet | Change detection remains to be challenging due to variability of real-world conditions. Existing methods usually require a long-time observation, from tens to... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 213 |
SubjectTerms | Convolution dilated retrospective convolution Feature extraction Kernel Neural networks short-time change detection Task analysis Testing Training |
Title | Spatio-Temporal Neural Network with Dilated Retrospective Convolution for Short-Time Change Detection |
URI | https://ieeexplore.ieee.org/document/8834948 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Akyc1YHynB48W2n10u2eQiAnECCbcSJ-RSMCQxYO_3k53F6Lx4Gm7e2i609nO7PT7viJ0F_mPyMd1SlRuoFrFNJEiciR1kRB-bTCphdLAeMIfX5OneTpvoPs9F8ZaG8BntgvNsJdvNnoHpbKeECCmIpqo6d3swNXKIsHA95JKwqm-5zVJhua9UX_UnwCSC1wj9PLjOJUQTYbHaFyPowSRvHd3herqr18Sjf8d6AnqHHh7-HkfkU5Rw67byE4DaJrMShGqFQY9jnAJAHAMlVg8WK580mnwiy22m5p9iX23n5VrYp_c4umbT9YJsEZwyUrAA1sELNe6g2bDh1n_kVSHK5BlTguiJLM-V9MqyaVkUaQSRl0sIs1onKhY8SQz3o6Wc01T6l9QMgekUy4M5AgyPkOt9WZtzxGWzrBMO8pcZhPnYsmNMsxw5f8tmWbsArXBQouPUj5jURnn8u_HV-gIZqkEx1yjVrHd2Rsf9wt1Gyb8GyCFrIs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4QD3pSA8Zve_Bood1H151BAgrEyEy4kX5GIgFDhgd_vW23QTQePO3j0HRvu71P3z3PUwDuAvsS2byOkUiVq1YRiTgLDIpNwJj9NqhYu9LAaEz7r9HjNJ7WwP1WC6O19uQz3XKn_l--WsmNK5W1GXNmKmwP7Md2VcF2aq0kYMTNvqg0caquaSWTwWl70Bl0xo7L5SaHb-fHhio-n_SOwKjqSUEjeW9tctGSX79MGv_b1WPQ3Cn34PM2J52Aml42gJ542jTKChuqBXSOHP7gKeDQ1WJhd76wsFPBF52vV5X-EtpmP8vJCS28hZM3C9eR043AQpcAuzr3bK5lE2S9h6zTR-X2Cmie4hwJTrRFa1JEKeckCEREsAlZIAkOIxEKGiXKxlFTKnGM7QNyYpzslDLlUAIPT0F9uVrqMwC5USSRBhOT6MiYkFMlFFFU2NUlkYScg4aL0OyjMNCYlcG5-Pv2LTjoZ6PhbDgYP12CQzdiBVXmCtTz9UZfWxSQixs_-N9kyK_e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+7th+International+Conference+on+Information%2C+Communication+and+Networks+%28ICICN%29&rft.atitle=Spatio-Temporal+Neural+Network+with+Dilated+Retrospective+Convolution+for+Short-Time+Change+Detection&rft.au=Chen%2C+Chao&rft.au=Zhang%2C+Sheng&rft.date=2019-04-01&rft.pub=IEEE&rft.isbn=1728104254&rft.spage=213&rft.epage=218&rft_id=info:doi/10.1109%2FICICN.2019.8834948&rft.externalDocID=8834948 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728104256/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728104256/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728104256/sc.gif&client=summon&freeimage=true |