Research on Tourist Route based on a Novel Ant Colony Optimization Algorithm

Ant Colony Optimization (ACO) algorithm is a kind of subject-based intelligent algorithm with positive feedback mechanism and strong ability to find and optimize. The travel recommendation system is recognized as one of the technologies that can effectively solve the problem of information overload....

Full description

Saved in:
Bibliographic Details
Published in2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS) pp. 160 - 163
Main Authors Yang, Naixin, Shi, Yuliang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2019
Subjects
Online AccessGet full text
DOI10.1109/ICPICS47731.2019.8942567

Cover

Abstract Ant Colony Optimization (ACO) algorithm is a kind of subject-based intelligent algorithm with positive feedback mechanism and strong ability to find and optimize. The travel recommendation system is recognized as one of the technologies that can effectively solve the problem of information overload. This paper introduces an improved ant colony algorithm based on multi-objective decision-making to recommend the travel route to meet the needs of users. In this algorithm, the ant uses the attraction rating information that meets the user's needs and the actual distance of the attraction to find the shortest path. In order to prove the accuracy of the algorithm recommendation, an experiment is conducted on a network of attractions. The experimental results show that the algorithm can provide high quality solutions and can be effectively applied in the travel recommendation system.
AbstractList Ant Colony Optimization (ACO) algorithm is a kind of subject-based intelligent algorithm with positive feedback mechanism and strong ability to find and optimize. The travel recommendation system is recognized as one of the technologies that can effectively solve the problem of information overload. This paper introduces an improved ant colony algorithm based on multi-objective decision-making to recommend the travel route to meet the needs of users. In this algorithm, the ant uses the attraction rating information that meets the user's needs and the actual distance of the attraction to find the shortest path. In order to prove the accuracy of the algorithm recommendation, an experiment is conducted on a network of attractions. The experimental results show that the algorithm can provide high quality solutions and can be effectively applied in the travel recommendation system.
Author Yang, Naixin
Shi, Yuliang
Author_xml – sequence: 1
  givenname: Naixin
  surname: Yang
  fullname: Yang, Naixin
  organization: School of Beijing University of Technology,Beijing,China,100124
– sequence: 2
  givenname: Yuliang
  surname: Shi
  fullname: Shi, Yuliang
  organization: School of Beijing University of Technology,Beijing,China,100124
BookMark eNotj11LwzAYRiPohc79Am_yB1qTNO3bXJbiR6E4mb0fafLGBdpmtJmw_fop7uqBc-DA80BupzAhIZSzlHOmnpv6s6m_JEDGU8G4SkslRV7ADVkrKDmIkmcgmLon7RYX1LPZ0zDRLhxnv0S6DceItNcL2j-s6Uf4wYFWU6R1GMJ0optD9KM_6-h_fTV8h9nH_fhI7pweFlxfd0W615eufk_azVtTV23iFYtJr3ppRQEGwJmeS6Y5NwVIkNqwXHJnAKVxBnMrlNbQZzZXTDpnlVUoMFuRp_-sR8TdYfajnk-768XsAkVwTQ8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPICS47731.2019.8942567
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728137209
1728137209
EndPage 163
ExternalDocumentID 8942567
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-b9b4d267c77fcb140a11c67474ac0541fc7e4cfce5d29aa7b3d5904ffd9d9e2e3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:57 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-b9b4d267c77fcb140a11c67474ac0541fc7e4cfce5d29aa7b3d5904ffd9d9e2e3
PageCount 4
ParticipantIDs ieee_primary_8942567
PublicationCentury 2000
PublicationDate 2019-July
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-July
PublicationDecade 2010
PublicationTitle 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS)
PublicationTitleAbbrev ICPICS
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6954416
Snippet Ant Colony Optimization (ACO) algorithm is a kind of subject-based intelligent algorithm with positive feedback mechanism and strong ability to find and...
SourceID ieee
SourceType Publisher
StartPage 160
SubjectTerms ACO algorithm
Ant colony optimization
Attraction rating
Convergence
Heuristic algorithms
Mathematical model
Multi-objective decision
Optimization
Planning
Search problems
Travel recommendation
Title Research on Tourist Route based on a Novel Ant Colony Optimization Algorithm
URI https://ieeexplore.ieee.org/document/8942567
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA7bTp5UNvGbHDzarU3TZDmO4tjEzYETdhv5eKPD2croBP31Ju02UTwIOYQQSEjyfiXP-wShK6CJVSSGwECkAxpbpwc1TwLPg0IIl3G35NIbjdngkd7OklkNXe9yYQCgBJ9B21fLt3yT67W_Kut0hTthjNdRnXdZlau1BeeEojNMJ8P0gXIe-7gvcmeg6v7j35TSbPT30Wg7YIUWeWmvC9XWn7-4GP87owPU-k7Qw5Od6TlENcia6G6LosN5hit2wAJ7xA9gb6uMb5Z4nL_DEveyAqdO72Uf-N4pjddNNibuLZ_y1aJ4fm2haf9mmg6CzWcJwUKERaCEooYwrjm3WrmoSUaRZi5WoFI7ryyymgPVVkNiiJCSq9gkIqTWGmEEEIiPUCPLMzhGGGxoiHKuANCYKuaKZEY4OWdUOnk1J6jpF2L-VtFhzDdrcPp38xna85tRIVzPUaNYreHC2fFCXZYb-AWEVp-y
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxFG4UD3pSA8bdHjw6MEs7pUcykYACkogJN9LlVYkwY8hgor_edgYwGg8mPTRNmjZt39Z-7ytC10CokWEEnoZAeSQyVg8qRj3HgxKGTETNgkuvP4g7T-RuTMdb6GaTCwMABfgM6q5avOXrTC3dVVmjye0Ji9k22qGEEFpma63hOT5vdJNhN3kkjEUu8gvsKSg7_Pg5pTAc7X3UXw9Z4kVe68tc1tXnLzbG_87pANW-U_TwcGN8DtEWpFXUW-PocJbikh8wxw7zA9hZK-2aBR5k7zDDrTTHidV86Qd-sGpjvsrHxK3Zc7aY5i_zGhq1b0dJx1t9l-BNuZ97kkuiw5gpxoySNm4SQaBiGy0QoaxfFhjFgCijgOqQC8FkpCn3iTGaaw4hREeokmYpHCMMxtehtM4AkIjI2BYRa24lPSbCSqw-QVW3EJO3khBjslqD07-br9BuZ9TvTXrdwf0Z2nMbU-Jdz1ElXyzhwlr1XF4Wm_kFD7mi_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+International+Conference+on+Power%2C+Intelligent+Computing+and+Systems+%28ICPICS%29&rft.atitle=Research+on+Tourist+Route+based+on+a+Novel+Ant+Colony+Optimization+Algorithm&rft.au=Yang%2C+Naixin&rft.au=Shi%2C+Yuliang&rft.date=2019-07-01&rft.pub=IEEE&rft.spage=160&rft.epage=163&rft_id=info:doi/10.1109%2FICPICS47731.2019.8942567&rft.externalDocID=8942567