Multi-class AdaBoost with Hypothesis Margin
Most AdaBoost algorithms for multi-class problems have to decompose the multi-class classification into multiple binary problems, like the Adaboost.MH and the LogitBoost. This paper proposes a new multi-class AdaBoost algorithm based on hypothesis margin, called AdaBoost.HM, which directly combines...
        Saved in:
      
    
          | Published in | 2010 20th International Conference on Pattern Recognition pp. 65 - 68 | 
|---|---|
| Main Authors | , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.08.2010
     | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 1424475422 9781424475421  | 
| ISSN | 1051-4651 | 
| DOI | 10.1109/ICPR.2010.25 | 
Cover
| Abstract | Most AdaBoost algorithms for multi-class problems have to decompose the multi-class classification into multiple binary problems, like the Adaboost.MH and the LogitBoost. This paper proposes a new multi-class AdaBoost algorithm based on hypothesis margin, called AdaBoost.HM, which directly combines multi-class weak classifiers. The hypothesis margin maximizes the output about the positive class meanwhile minimizes the maximal outputs about the negative classes. We discuss the upper bound of the training error about AdaBoost.HM and a previous multi-class learning algorithm AdaBoost.M1. Our experiments using feed forward neural networks as weak learners show that the proposed AdaBoost.HM yields higher classification accuracies than the AdaBoost.M1 and the AdaBoost.MH, and meanwhile, AdaBoost.HM is computationally efficient in training. | 
    
|---|---|
| AbstractList | Most AdaBoost algorithms for multi-class problems have to decompose the multi-class classification into multiple binary problems, like the Adaboost.MH and the LogitBoost. This paper proposes a new multi-class AdaBoost algorithm based on hypothesis margin, called AdaBoost.HM, which directly combines multi-class weak classifiers. The hypothesis margin maximizes the output about the positive class meanwhile minimizes the maximal outputs about the negative classes. We discuss the upper bound of the training error about AdaBoost.HM and a previous multi-class learning algorithm AdaBoost.M1. Our experiments using feed forward neural networks as weak learners show that the proposed AdaBoost.HM yields higher classification accuracies than the AdaBoost.M1 and the AdaBoost.MH, and meanwhile, AdaBoost.HM is computationally efficient in training. | 
    
| Author | Cheng-Lin Liu Xiaobo Jin Xinwen Hou  | 
    
| Author_xml | – sequence: 1 surname: Xiaobo Jin fullname: Xiaobo Jin email: xbjin@nlpr.ia.ac.cn organization: Nat. Lab. of Pattern Recognition, Chinese Acad. of Sci., Beijing, China – sequence: 2 surname: Xinwen Hou fullname: Xinwen Hou email: xwhou@nlpr.ia.ac.cn organization: Nat. Lab. of Pattern Recognition, Chinese Acad. of Sci., Beijing, China – sequence: 3 surname: Cheng-Lin Liu fullname: Cheng-Lin Liu email: liucl@nlpr.ia.ac.cn organization: Nat. Lab. of Pattern Recognition, Chinese Acad. of Sci., Beijing, China  | 
    
| BookMark | eNo1zM1PwjAYgPEaMRFwN29edjeD92379uOICwoJBGO4k5Z10mRuZJ0x_PeaqKcnv8szYaO2awNj9wgzRLDzdfn6NuPwQ05XLLPaoORSapIor9nkH5yP2BiBsJCK8JZlKUUPXGmliWjMHrefzRCLY-NSyheVe-q6NORfcTjlq8u5G04hxZRvXf8e2zt2U7smheyvU7Z_Xu7LVbHZvazLxaaIFobCGy9Boqg96VpJ4ABUOV_ZozNG6EoqbbhwSgvjyYMJFXIRBCEp0MpbMWUPv9sYQjic-_jh-suByGrFrfgGFvND-A | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/ICPR.2010.25 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISBN | 9781424475414 9780769541099 1424475414 0769541097  | 
    
| EndPage | 68 | 
    
| ExternalDocumentID | 5597629 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 29J 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS  | 
    
| ID | FETCH-LOGICAL-i90t-b8b40413fb57f6402005dabd9ca8837d467823a6738b5b08ed123e35156076b93 | 
    
| IEDL.DBID | RIE | 
    
| ISBN | 1424475422 9781424475421  | 
    
| ISSN | 1051-4651 | 
    
| IngestDate | Wed Aug 27 02:53:00 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i90t-b8b40413fb57f6402005dabd9ca8837d467823a6738b5b08ed123e35156076b93 | 
    
| PageCount | 4 | 
    
| ParticipantIDs | ieee_primary_5597629 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2010-Aug. | 
    
| PublicationDateYYYYMMDD | 2010-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2010 text: 2010-Aug.  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 2010 20th International Conference on Pattern Recognition | 
    
| PublicationTitleAbbrev | ICPR | 
    
| PublicationYear | 2010 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssib026767555 ssj0020358 ssj0000452726  | 
    
| Score | 1.8434638 | 
    
| Snippet | Most AdaBoost algorithms for multi-class problems have to decompose the multi-class classification into multiple binary problems, like the Adaboost.MH and the... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 65 | 
    
| SubjectTerms | Accuracy Additives Artificial neural networks Boosting Error analysis Training Upper bound  | 
    
| Title | Multi-class AdaBoost with Hypothesis Margin | 
    
| URI | https://ieeexplore.ieee.org/document/5597629 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTnpBAePv9OBNB2Ndu-2oRIImGGIw4Ub6awkx2YiMg_719nUbEuPBW9dT1772vde-7_sAblIbgltb0F5CQ-GFqbRbKuLM85XmNOTCdiDeefrCJ2_h84ItGnC3w8IYY1zxmelj073l61xt8apsgNEvD5ImNKOYl1it2nYCRzxWYSzdKRyyIMLQokq-fMpKWByzORNnwxrkhQqwQc39VH0PdxXyyeBpNHstK8BQTXtPgcU5oHEbpvXQy7qT9_62kH319YvV8b__dgS9H6gfme2c2DE0TNaBdq31QKqt34HDPeLCLtw63K6nMPQm91o85PmmIHinSyafawR1bVYbgiK6q6wH8_HjfDTxKtkFb5X4hSdjaVdvSFPJopRjeukzLaROlIhtNqvtyRoHVKBaqGTSj422zs9QhpDsiMuEnkAryzNzCkSzFMmmlLaGEkaBkJIaP06pQkSwNeEz6OJELNclscaymoPzv7sv4KB8usfqu0toFR9bc2UjgkJeO1P4Bo_lq1Q | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPKgXFDD-dgdvOhjrj21HNZKhQIjBhBtZ1y4hJhuRcdC_3r5uQ2I8eOt66trXvvfa930fwE2iQ3BtC9IOCI1smgi9pTzObCeWnFAe6Q7EO4_GPHyjzzM2q8HdBgujlDLFZ6qDTfOWL7N4jVdlXYx-uRvswC6jlLICrVVZj2uox0qUpTmHKXM9DC7K9MshrADGMZ01cdarYF6oAetW7E_ld29TIx90B4-T16IGDPW0tzRYjAvqN2BUDb6oPHnvrHPRib9-8Tr-9-8Oof0D9rMmGzd2BDWVNqFRqT1Y5eZvwsEWdWELbg1y144x-LbuZfSQZavcwltdK_xcIqxrtVhZKKO7SNsw7T9NH0O7FF6wF4GT28IXev16JBHMSzgmmA6TkZBBHPk6n5X6bPVdEqFeqGDC8ZXU7k8RhqBsj4uAHEM9zVJ1ApZkCdJNxVKbCvXcSAiiHD8hMWKCtRGfQgsnYr4sqDXm5Ryc_d19DXvhdDScDwfjl3PYLx7ysRbvAur5x1pd6vggF1fGLL4BxCCuoQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+20th+International+Conference+on+Pattern+Recognition&rft.atitle=Multi-class+AdaBoost+with+Hypothesis+Margin&rft.au=Xiaobo+Jin&rft.au=Xinwen+Hou&rft.au=Cheng-Lin+Liu&rft.date=2010-08-01&rft.pub=IEEE&rft.isbn=9781424475421&rft.issn=1051-4651&rft.spage=65&rft.epage=68&rft_id=info:doi/10.1109%2FICPR.2010.25&rft.externalDocID=5597629 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-4651&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-4651&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-4651&client=summon |