OGPR: An Obstacle-Guided Path Refinement Approach for Mobile Robot Path Planning

Despite the emergence of the available path planning approaches for mobile robots, excessive computation time have remained an open issue, especially in time-critical scenarios. In this paper, however, an Obstacle-Guided Path Refinement (OGPR) approach is developed to plan a set of short collision-f...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE International Conference on Robotics and Biomimetics (ROBIO) pp. 844 - 849
Main Authors B. Atia, Mohamed G., Salah, Omar, Ei-Hussieny, Haitham
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2018
Subjects
Online AccessGet full text
DOI10.1109/ROBIO.2018.8665080

Cover

Abstract Despite the emergence of the available path planning approaches for mobile robots, excessive computation time have remained an open issue, especially in time-critical scenarios. In this paper, however, an Obstacle-Guided Path Refinement (OGPR) approach is developed to plan a set of short collision-free paths between the start and the target points for mobile robots. A particle swarm optimization framework has been adopted to retrieve the obstacles geometry and subsequently refine the line-of-sight path connecting the start and the target points. The developed OGPR approach has assessed over a 2D simulation environment and the results show that its effectiveness in planning safe paths shorter than the state-of-the-art A* algorithm. This, in fact, could encourage further application of the proposed OGPR approach in future in 3D spatial environments.
AbstractList Despite the emergence of the available path planning approaches for mobile robots, excessive computation time have remained an open issue, especially in time-critical scenarios. In this paper, however, an Obstacle-Guided Path Refinement (OGPR) approach is developed to plan a set of short collision-free paths between the start and the target points for mobile robots. A particle swarm optimization framework has been adopted to retrieve the obstacles geometry and subsequently refine the line-of-sight path connecting the start and the target points. The developed OGPR approach has assessed over a 2D simulation environment and the results show that its effectiveness in planning safe paths shorter than the state-of-the-art A* algorithm. This, in fact, could encourage further application of the proposed OGPR approach in future in 3D spatial environments.
Author Salah, Omar
B. Atia, Mohamed G.
Ei-Hussieny, Haitham
Author_xml – sequence: 1
  givenname: Mohamed G.
  surname: B. Atia
  fullname: B. Atia, Mohamed G.
  organization: Department of Basic Sciences, Monofiya High Institute of Engineering and Technology, Monofiya, Egypt
– sequence: 2
  givenname: Omar
  surname: Salah
  fullname: Salah, Omar
  organization: Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Egypt
– sequence: 3
  givenname: Haitham
  surname: Ei-Hussieny
  fullname: Ei-Hussieny, Haitham
  organization: Department of Electrical Engineering, Faculty of Engineering (Shoubra), Benha University, Egypt
BookMark eNotj7tOwzAYRo0EA5S-ACx-gQRf4htbqCBUKnIUda_s-A-1lNpRGgbeHqR2-pZzjvQ9oNuUEyD0RElJKTEvnX3b2pIRqkstpSCa3KC1UZoqpinhSul71Nqm7V5xnbD158X1IxTNTwwQcOuWI-5giAlOkBZcT9OcXX_EQ57xV_ZxBNxln5cL2Y4upZi-H9Hd4MYzrK-7QvuP9_3ms9jZZrupd0U0ZCk8ZwKkcsFXHAR3Qg5UGc25N0FWPecmEK-G0DvltK6EkFwY5iTr_w0WPF-h50s2AsBhmuPJzb-H603-BziqSxM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ROBIO.2018.8665080
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728103778
1728103770
EndPage 849
ExternalDocumentID 8665080
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-b325e67adb43e53a56f179833b9d64c339d0b7fdca7a8845563592a62cdb42db3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:02 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-b325e67adb43e53a56f179833b9d64c339d0b7fdca7a8845563592a62cdb42db3
PageCount 6
ParticipantIDs ieee_primary_8665080
PublicationCentury 2000
PublicationDate 2018-Dec.
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-Dec.
PublicationDecade 2010
PublicationTitle 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO)
PublicationTitleAbbrev ROBIO
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6755692
Snippet Despite the emergence of the available path planning approaches for mobile robots, excessive computation time have remained an open issue, especially in...
SourceID ieee
SourceType Publisher
StartPage 844
SubjectTerms Mathematical model
Mobile robots
Path planning
Planning
Shape
Time factors
Title OGPR: An Obstacle-Guided Path Refinement Approach for Mobile Robot Path Planning
URI https://ieeexplore.ieee.org/document/8665080
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA7bTp5UNvGbHDzarms-mnqb4jaF2VIm7Daa5A0MoRVpL_56k7abKB68hZAv8vU-aZ_3eRG6CYmkik20BzzXHjXE2DMnjOeghgIdRVI2LN8Xvnilz2u27qHbvS8MADTkM_BdsvmXr0tVu09lY6fNZhFOH_UjwVtfrZ0fTBCPs-T-KXFkLeF3BX9ETGkMxuwQLXddtTyRN7-upK8-f6kw_ncsR2j07ZqH073ROUY9KIYoTeZpdoenBU6kRXt2J3jzeqtB49QCPJyBsVjStYennYQ4tlgVL0tp7wSclbKs2pK7EEYjtJo9rh4WXhcqwdvGQeVJEjLgUa4lJcBIzrhxQmSEyFhzqgiJdSAjo1Ue5UJQJwrG4jDnobI1Qi3JCRoUZQGnCNsXhmGOpQmc0ZyJmOsJaBYEIIwxIjhDQzcZm_dWDGPTzcP539kX6MAtSMv_uESD6qOGK2vFK3ndLN8X5KOeMw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZKGWAC1CJuPDCSNI2PJGwF0QPaJoqK1K2K42epqpQglCz8euwkLQIxsFmWL_l6n5PvfQ-hO5cImrK-tIAn0qKKKH3mfGUZqJGC9DwhKpbvnI_f6MuSLVvofucLAwAV-Qxsk6z-5cs8Lc2nsp7RZtMIZw_tM0opq721tp4wTtCLw8dJaOhavt0U_REzpTIZwyM023ZWM0U2dlkIO_38pcP439Eco-63cx6OdmbnBLUg66AoHEXxAx5kOBQa7-m9YI3KtQSJIw3xcAxKo0nTHh40IuJYo1U8y4W-FXCci7yoS26DGHXRYvi8eBpbTbAEax04hSWIy4B7iRSUACMJ48pIkREiAslpSkggHeEpmSZe4vvUyIKxwE24m-oarhTkFLWzPIMzhPUbQzHD0wTOaML8gMs-SOY44CulfOccdcxkrN5rOYxVMw8Xf2ffooPxYjZdTSfz10t0aBanZoNcoXbxUcK1tumFuKmW8gte7qGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+International+Conference+on+Robotics+and+Biomimetics+%28ROBIO%29&rft.atitle=OGPR%3A+An+Obstacle-Guided+Path+Refinement+Approach+for+Mobile+Robot+Path+Planning&rft.au=B.+Atia%2C+Mohamed+G.&rft.au=Salah%2C+Omar&rft.au=Ei-Hussieny%2C+Haitham&rft.date=2018-12-01&rft.pub=IEEE&rft.spage=844&rft.epage=849&rft_id=info:doi/10.1109%2FROBIO.2018.8665080&rft.externalDocID=8665080