Comparison of learning algorithms for neural network based speed estimator in sensorless induction motor drives

This paper identifies the suitable learning algorithm for neural network based on-line speed estimator in sensorless induction motor drives. The performance of sensorless controlled induction motor drives depends on the accuracy of the estimated speed. Conventional estimation techniques being mathem...

Full description

Saved in:
Bibliographic Details
Published in2012 International Conference on Advances in Engineering, Science and Management pp. 196 - 202
Main Authors Sedhuraman, K., Himavathi, S., Muthuramalingam, A.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2012
Subjects
Online AccessGet full text
ISBN9781467302135
1467302139

Cover

Abstract This paper identifies the suitable learning algorithm for neural network based on-line speed estimator in sensorless induction motor drives. The performance of sensorless controlled induction motor drives depends on the accuracy of the estimated speed. Conventional estimation techniques being mathematically complex require more execution time resulting in poor dynamic response. The nonlinear mapping capability and powerful learning algorithms of neural network provides an alternative for on-line speed estimation. A structurally compact and simple neural model is required for real time implementation to derive the desired accuracy and response time. This in turn to a large extent depends on the type of learning algorithm used to train neural based speed estimator. A self organizing Single Neuron Cascaded Neural Network (SNC-NN) architecture is trained off-line using three types of learning algorithm namely Backpropagation with Momentum (BPM), Variable Learning Rate (VLR) and Levenberg-Marquardt (LM) Algorithm to efficiently model the on-line speed estimator. The performance of the proposed NN based speed estimator model trained off-line with three different learning algorithms is compared in terms of accuracy, epochs needed for training and structural compactness. The suitable learning algorithm for off-line training of on-line NN based speed estimation in sensorless induction motor drives is identified and the promising results obtained are presented.
AbstractList This paper identifies the suitable learning algorithm for neural network based on-line speed estimator in sensorless induction motor drives. The performance of sensorless controlled induction motor drives depends on the accuracy of the estimated speed. Conventional estimation techniques being mathematically complex require more execution time resulting in poor dynamic response. The nonlinear mapping capability and powerful learning algorithms of neural network provides an alternative for on-line speed estimation. A structurally compact and simple neural model is required for real time implementation to derive the desired accuracy and response time. This in turn to a large extent depends on the type of learning algorithm used to train neural based speed estimator. A self organizing Single Neuron Cascaded Neural Network (SNC-NN) architecture is trained off-line using three types of learning algorithm namely Backpropagation with Momentum (BPM), Variable Learning Rate (VLR) and Levenberg-Marquardt (LM) Algorithm to efficiently model the on-line speed estimator. The performance of the proposed NN based speed estimator model trained off-line with three different learning algorithms is compared in terms of accuracy, epochs needed for training and structural compactness. The suitable learning algorithm for off-line training of on-line NN based speed estimation in sensorless induction motor drives is identified and the promising results obtained are presented.
Author Sedhuraman, K.
Muthuramalingam, A.
Himavathi, S.
Author_xml – sequence: 1
  givenname: K.
  surname: Sedhuraman
  fullname: Sedhuraman, K.
  email: sedhu_k@pec.edu
  organization: Dept. of EEE, Pondicherry Eng. Coll., Puducherry, India
– sequence: 2
  givenname: S.
  surname: Himavathi
  fullname: Himavathi, S.
  email: himavathi@pec.edu
  organization: Dept. of EEE, Pondicherry Eng. Coll., Puducherry, India
– sequence: 3
  givenname: A.
  surname: Muthuramalingam
  fullname: Muthuramalingam, A.
  email: amrlingam@pec.edu
  organization: Dept. of EEE, Pondicherry Eng. Coll., Puducherry, India
BookMark eNotTs1KxDAYjKigu_YJvOQFCvlpmuYoxT9Y2Mvel7T5skbbpOTrKr69EZ3DDMMMw2zIVUwRLsim44YZ1gjBL0lldMebVksmuFQ3pEJ8ZwWaCd21tyT1aV5sDpgiTZ5OYHMM8UTtdEo5rG8zUp8yjXDOdiqyfqX8QQeL4CguUBhwDbNdSylEihAx5QkQi3PncQ1ld06_qcvhE_COXHs7IVT_uiWHp8dD_1Lv9s-v_cOuDoattfWi053gBrgxYBWHxhmtlB-9GyQwb8wA1jMmpVe60XYcmWlbqbkZFRuc3JL7v9kAAMcll4f5-9gK3nKu5A_AdlmG
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 8190904221
9788190904223
EndPage 202
ExternalDocumentID 6216115
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-af2878219e199ea51e4d9755fcfdb3e0f99beaf0033f5747acc09663719c50bd3
IEDL.DBID RIE
ISBN 9781467302135
1467302139
IngestDate Wed Aug 27 04:11:16 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-af2878219e199ea51e4d9755fcfdb3e0f99beaf0033f5747acc09663719c50bd3
PageCount 7
ParticipantIDs ieee_primary_6216115
PublicationCentury 2000
PublicationDate 2012-March
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-March
PublicationDecade 2010
PublicationTitle 2012 International Conference on Advances in Engineering, Science and Management
PublicationTitleAbbrev ICAESM
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000702786
Score 1.4954302
Snippet This paper identifies the suitable learning algorithm for neural network based on-line speed estimator in sensorless induction motor drives. The performance of...
SourceID ieee
SourceType Publisher
StartPage 196
SubjectTerms Algorithm design and analysis
Artificial neural networks
Biological neural networks
Computer architecture
neural learning algorithms
neural networks
Sensor-less controlled IM drives
single neuron cascaded architecture
speed estimator
Title Comparison of learning algorithms for neural network based speed estimator in sensorless induction motor drives
URI https://ieeexplore.ieee.org/document/6216115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJyZALeJbHhhJiZM4ieeKqkIqYihSt8of51LRJlWTLPx6zkkaBGJgSuxIieWzcu_su_cIudcJgiCWgucbR6qtQXiCq9BLjWIqAhM0FBuzl3j6Fj0v-KJHHrpaGACok89g5G7rs3yT68ptlT3GAeITV1F-lKRxU6vV7afg0g2wt67dinHZBghtDpRObZv_UFCpHcjkhMwOn27yRj5GValG-vMXK-N_x3ZKht-levS1c0JnpAfZgOTjTl2Q5pa2yhArKjerfL8u37cFRaxKHZel3OClzgSnzqEZWuzwVdRxb2xdPE7XGS0w1M3doXyBLdPQzVI0MT41e0dbOyTzydN8PPVaZQVvLfzSkxbjpBT_VcCEAMkZREYknFttjQrBt0IokNbpvFmO8YbUGiOdOEyY0NxXJjwn_SzP4IJQBECRTYCFADbioBTXARpYSK5jIyy7JAM3V8tdw52xbKfp6u_ua3KMgCRocrxuSL_cV3CLTr9Ud7W1vwBDdq_r
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWqMsAEqEV844GRlHzYSTxXVAXaiqFI3arYPpeKklRNuvDrOSdpEIiBKXYsJZHPyr2z770j5FZFCIK8GBxXW1FtBcIRXAZOrKUnGWi_ktgYT8LhK3ua8VmL3DVcGAAok8-gZ5vlWb7O1NZuld2HPuITyyjf44wxXrG1mh0VXLx-FIcleyvEhesjuNmJOtV9_qOGSulCBodkvHt5lTny3tsWsqc-f-ky_vfrjkj3m6xHXxo3dExakHZI1m_qC9LM0Lo2xIImq0W2WRZvHzlFtEqtmmWywkuZC06tS9M0X-OjqFXf-LAROV2mNMdgN7PH8jn2dCU4S9HIOKo3Vri2S6aDh2l_6NS1FZylcAsnMRgpxfi3Ak8ISLgHTIuIc6OMlgG4RggJibGV3gzHiCNRCmOdMIg8obgrdXBC2mmWwimhCIGYicALAAzjICVXPppYJFyFWhjvjHTsXM3XlXrGvJ6m879v35D94XQ8mo8eJ88X5ADhiV9lfF2SdrHZwhVCgEJel5b_AqRKszg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+International+Conference+on+Advances+in+Engineering%2C+Science+and+Management&rft.atitle=Comparison+of+learning+algorithms+for+neural+network+based+speed+estimator+in+sensorless+induction+motor+drives&rft.au=Sedhuraman%2C+K.&rft.au=Himavathi%2C+S.&rft.au=Muthuramalingam%2C+A.&rft.date=2012-03-01&rft.pub=IEEE&rft.isbn=9781467302135&rft.spage=196&rft.epage=202&rft.externalDocID=6216115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467302135/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467302135/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467302135/sc.gif&client=summon&freeimage=true