Learning to communicate: Channel auto-encoders, domain specific regularizers, and attention
We address the problem of learning an efficient and adaptive physical layer encoding to communicate binary information over an impaired channel. In contrast to traditional work, we treat the problem an unsupervised machine learning problem focusing on optimizing reconstruction loss through artificia...
Saved in:
| Published in | 2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) pp. 223 - 228 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.12.2016
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/ISSPIT.2016.7886039 |
Cover
| Abstract | We address the problem of learning an efficient and adaptive physical layer encoding to communicate binary information over an impaired channel. In contrast to traditional work, we treat the problem an unsupervised machine learning problem focusing on optimizing reconstruction loss through artificial impairment layers in an autoencoder (we term this a channel autoencoder) and introduce several new regularizing layers which emulate common wireless channel impairments. We also discuss the role of attention models in the form of the radio transformer network for helping to recover canonical signal representations before decoding. We demonstrate some promising initial capacity results from this approach and address remaining challenges before such a system could become practical. |
|---|---|
| AbstractList | We address the problem of learning an efficient and adaptive physical layer encoding to communicate binary information over an impaired channel. In contrast to traditional work, we treat the problem an unsupervised machine learning problem focusing on optimizing reconstruction loss through artificial impairment layers in an autoencoder (we term this a channel autoencoder) and introduce several new regularizing layers which emulate common wireless channel impairments. We also discuss the role of attention models in the form of the radio transformer network for helping to recover canonical signal representations before decoding. We demonstrate some promising initial capacity results from this approach and address remaining challenges before such a system could become practical. |
| Author | Karra, Kiran Clancy, T. Charles O'Shea, Timothy J. |
| Author_xml | – sequence: 1 givenname: Timothy J. surname: O'Shea fullname: O'Shea, Timothy J. email: oshea@vt.edu organization: Virginia Tech, Arlington, VA, USA – sequence: 2 givenname: Kiran surname: Karra fullname: Karra, Kiran email: kiran.karra@vt.edu organization: Virginia Tech, Arlington, VA, USA – sequence: 3 givenname: T. Charles surname: Clancy fullname: Clancy, T. Charles email: tcc@vt.edu organization: Virginia Tech, Arlington, VA, USA |
| BookMark | eNotj8tKxDAYRiPoQsd5gtnkAWxN2jQXd1K8FAoK052L4W_ydwy0ydCmC316RWf1LQ7nwHdDLkMMSMiOs5xzZu6b_f696fKCcZkrrSUrzQXZGqV5xQyrtBDsmny0CHPw4UhTpDZO0xq8hYQPtP6EEHCksKaYYbDR4bzcURcn8IEuJ7R-8JbOeFxHmP33H4XgKKSEIfkYbsnVAOOC2_NuSPf81NWvWfv20tSPbeYNSxk4ZGLghRPCipLZnmthQA7OaVMqqErm5CCtLHqJqIyUCoThShunfpVelxuy-896RDycZj_B_HU4Py5_APx_UVw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ISSPIT.2016.7886039 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781509058440 1509058443 |
| EndPage | 228 |
| ExternalDocumentID | 7886039 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i90t-ade04f12d44c430cb1849a6fdd8937a530d6f6c62b6ee79667a491789d7d44b83 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:37:44 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-ade04f12d44c430cb1849a6fdd8937a530d6f6c62b6ee79667a491789d7d44b83 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_7886039 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Dec. |
| PublicationDateYYYYMMDD | 2016-12-01 |
| PublicationDate_xml | – month: 12 year: 2016 text: 2016-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | 2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) |
| PublicationTitleAbbrev | ISSPIT |
| PublicationYear | 2016 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 2.1636195 |
| Snippet | We address the problem of learning an efficient and adaptive physical layer encoding to communicate binary information over an impaired channel. In contrast to... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 223 |
| SubjectTerms | Gaussian noise Levee Phase shift keying Reactive power Signal to noise ratio Training Wireless communication |
| Title | Learning to communicate: Channel auto-encoders, domain specific regularizers, and attention |
| URI | https://ieeexplore.ieee.org/document/7886039 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXhcu_7IksarODZhMtiEgYeRJq8y1FZKe9lfb15aJ4oHbyVNaMiDfHnN932PkBuwe762uOCZ2KAkJ9KeYjK2AYkSbQFZZQlqh-ePfPrEHtbjdYcM91oYAHDkM_Dx0d3lm0LX-KtsZNM1HsSyS7oi4Y1WqzUSCgM5mi2Xi9kK2Vrcb3v-KJniEGNySOZf32qIIq9-XaW-3v2yYfzvZI7I4FubRxd71DkmHcj75Lm1SX2hVUH1XvMBtxTVAzm8UVVXhYemlUhcHlJTvKttTlFniVwhWrqS9OV2596q3FD03XRMyAFZTe5Xd1OvLZvgbWVQecpAwLIwMoxpFgc6tTmcVDwzBo8mahwHhmdc8yjlAMJmO8IGJxSJNMIOSZP4hPTyIodTQiUDA0kESJxhYxApes2HSopY2TxLBGekj-uy-WiMMTbtkpz_3XxBDjA2DRfkkvSqsoYri-hVeu1C-QnCTaNa |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zHvSksom_zcHj2vVHmjZexbHpNgarMPAw0uRVhtrKaC_7681r60Tx4K2kCQ15kC-v-b7vEXIDZs9XBhcs7WuU5HjKkkz4JiBepAwgyzRC7fBkyodP7GERLFqkt9XCAEBFPgMbH6u7fJ2rEn-V9U26xh1f7JDdgDEW1GqtxkrIdUR_NJ_PRjHytbjd9P1RNKXCjMEBmXx9raaKvNplkdhq88uI8b_TOSTdb3UenW1x54i0IOuQ58Yo9YUWOVVb1QfcUtQPZPBGZVnkFtpWInW5R3X-LlcZRaUlsoXouipKv15tqrcy0xSdNysuZJfEg_v4bmg1hROslXAKS2pwWOp6mjHFfEclJosTkqda4-FEBr6jecoV9xIOEJp8JzThccNI6NAMSSL_mLSzPIMTQgUDDZEHSJ1hAYQJus27UoS-NJlW6JySDq7L8qO2xlg2S3L2d_M12RvGk_FyPJo-npN9jFPNDLkg7WJdwqXB9yK5qsL6CX2Apqc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+International+Symposium+on+Signal+Processing+and+Information+Technology+%28ISSPIT%29&rft.atitle=Learning+to+communicate%3A+Channel+auto-encoders%2C+domain+specific+regularizers%2C+and+attention&rft.au=O%27Shea%2C+Timothy+J.&rft.au=Karra%2C+Kiran&rft.au=Clancy%2C+T.+Charles&rft.date=2016-12-01&rft.pub=IEEE&rft.spage=223&rft.epage=228&rft_id=info:doi/10.1109%2FISSPIT.2016.7886039&rft.externalDocID=7886039 |