Learning to communicate: Channel auto-encoders, domain specific regularizers, and attention

We address the problem of learning an efficient and adaptive physical layer encoding to communicate binary information over an impaired channel. In contrast to traditional work, we treat the problem an unsupervised machine learning problem focusing on optimizing reconstruction loss through artificia...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) pp. 223 - 228
Main Authors O'Shea, Timothy J., Karra, Kiran, Clancy, T. Charles
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2016
Subjects
Online AccessGet full text
DOI10.1109/ISSPIT.2016.7886039

Cover

Abstract We address the problem of learning an efficient and adaptive physical layer encoding to communicate binary information over an impaired channel. In contrast to traditional work, we treat the problem an unsupervised machine learning problem focusing on optimizing reconstruction loss through artificial impairment layers in an autoencoder (we term this a channel autoencoder) and introduce several new regularizing layers which emulate common wireless channel impairments. We also discuss the role of attention models in the form of the radio transformer network for helping to recover canonical signal representations before decoding. We demonstrate some promising initial capacity results from this approach and address remaining challenges before such a system could become practical.
AbstractList We address the problem of learning an efficient and adaptive physical layer encoding to communicate binary information over an impaired channel. In contrast to traditional work, we treat the problem an unsupervised machine learning problem focusing on optimizing reconstruction loss through artificial impairment layers in an autoencoder (we term this a channel autoencoder) and introduce several new regularizing layers which emulate common wireless channel impairments. We also discuss the role of attention models in the form of the radio transformer network for helping to recover canonical signal representations before decoding. We demonstrate some promising initial capacity results from this approach and address remaining challenges before such a system could become practical.
Author Karra, Kiran
Clancy, T. Charles
O'Shea, Timothy J.
Author_xml – sequence: 1
  givenname: Timothy J.
  surname: O'Shea
  fullname: O'Shea, Timothy J.
  email: oshea@vt.edu
  organization: Virginia Tech, Arlington, VA, USA
– sequence: 2
  givenname: Kiran
  surname: Karra
  fullname: Karra, Kiran
  email: kiran.karra@vt.edu
  organization: Virginia Tech, Arlington, VA, USA
– sequence: 3
  givenname: T. Charles
  surname: Clancy
  fullname: Clancy, T. Charles
  email: tcc@vt.edu
  organization: Virginia Tech, Arlington, VA, USA
BookMark eNotj8tKxDAYRiPoQsd5gtnkAWxN2jQXd1K8FAoK052L4W_ydwy0ydCmC316RWf1LQ7nwHdDLkMMSMiOs5xzZu6b_f696fKCcZkrrSUrzQXZGqV5xQyrtBDsmny0CHPw4UhTpDZO0xq8hYQPtP6EEHCksKaYYbDR4bzcURcn8IEuJ7R-8JbOeFxHmP33H4XgKKSEIfkYbsnVAOOC2_NuSPf81NWvWfv20tSPbeYNSxk4ZGLghRPCipLZnmthQA7OaVMqqErm5CCtLHqJqIyUCoThShunfpVelxuy-896RDycZj_B_HU4Py5_APx_UVw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISSPIT.2016.7886039
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509058440
1509058443
EndPage 228
ExternalDocumentID 7886039
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-ade04f12d44c430cb1849a6fdd8937a530d6f6c62b6ee79667a491789d7d44b83
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:44 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-ade04f12d44c430cb1849a6fdd8937a530d6f6c62b6ee79667a491789d7d44b83
PageCount 6
ParticipantIDs ieee_primary_7886039
PublicationCentury 2000
PublicationDate 2016-Dec.
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationTitle 2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)
PublicationTitleAbbrev ISSPIT
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.1636195
Snippet We address the problem of learning an efficient and adaptive physical layer encoding to communicate binary information over an impaired channel. In contrast to...
SourceID ieee
SourceType Publisher
StartPage 223
SubjectTerms Gaussian noise
Levee
Phase shift keying
Reactive power
Signal to noise ratio
Training
Wireless communication
Title Learning to communicate: Channel auto-encoders, domain specific regularizers, and attention
URI https://ieeexplore.ieee.org/document/7886039
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXhcu_7IksarODZhMtiEgYeRJq8y1FZKe9lfb15aJ4oHbyVNaMiDfHnN932PkBuwe762uOCZ2KAkJ9KeYjK2AYkSbQFZZQlqh-ePfPrEHtbjdYcM91oYAHDkM_Dx0d3lm0LX-KtsZNM1HsSyS7oi4Y1WqzUSCgM5mi2Xi9kK2Vrcb3v-KJniEGNySOZf32qIIq9-XaW-3v2yYfzvZI7I4FubRxd71DkmHcj75Lm1SX2hVUH1XvMBtxTVAzm8UVVXhYemlUhcHlJTvKttTlFniVwhWrqS9OV2596q3FD03XRMyAFZTe5Xd1OvLZvgbWVQecpAwLIwMoxpFgc6tTmcVDwzBo8mahwHhmdc8yjlAMJmO8IGJxSJNMIOSZP4hPTyIodTQiUDA0kESJxhYxApes2HSopY2TxLBGekj-uy-WiMMTbtkpz_3XxBDjA2DRfkkvSqsoYri-hVeu1C-QnCTaNa
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zHvSksom_zcHj2vVHmjZexbHpNgarMPAw0uRVhtrKaC_7681r60Tx4K2kCQ15kC-v-b7vEXIDZs9XBhcs7WuU5HjKkkz4JiBepAwgyzRC7fBkyodP7GERLFqkt9XCAEBFPgMbH6u7fJ2rEn-V9U26xh1f7JDdgDEW1GqtxkrIdUR_NJ_PRjHytbjd9P1RNKXCjMEBmXx9raaKvNplkdhq88uI8b_TOSTdb3UenW1x54i0IOuQ58Yo9YUWOVVb1QfcUtQPZPBGZVnkFtpWInW5R3X-LlcZRaUlsoXouipKv15tqrcy0xSdNysuZJfEg_v4bmg1hROslXAKS2pwWOp6mjHFfEclJosTkqda4-FEBr6jecoV9xIOEJp8JzThccNI6NAMSSL_mLSzPIMTQgUDDZEHSJ1hAYQJus27UoS-NJlW6JySDq7L8qO2xlg2S3L2d_M12RvGk_FyPJo-npN9jFPNDLkg7WJdwqXB9yK5qsL6CX2Apqc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+International+Symposium+on+Signal+Processing+and+Information+Technology+%28ISSPIT%29&rft.atitle=Learning+to+communicate%3A+Channel+auto-encoders%2C+domain+specific+regularizers%2C+and+attention&rft.au=O%27Shea%2C+Timothy+J.&rft.au=Karra%2C+Kiran&rft.au=Clancy%2C+T.+Charles&rft.date=2016-12-01&rft.pub=IEEE&rft.spage=223&rft.epage=228&rft_id=info:doi/10.1109%2FISSPIT.2016.7886039&rft.externalDocID=7886039