Distribution fault diagnosis using a hybrid algorithm of fuzzy classification and artificial immune systems
Effective distribution outage cause identification can help expedite the restoration procedure and improve the system availability. The fuzzy classification E-algorithm and the immune system inspired classification algorithm, artificial immune recognition system (AIRS), have demonstrated good capabi...
        Saved in:
      
    
          | Published in | 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century pp. 1 - 6 | 
|---|---|
| Main Authors | , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.07.2008
     | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 9781424419050 1424419050  | 
| ISSN | 1932-5517 | 
| DOI | 10.1109/PES.2008.4596793 | 
Cover
| Abstract | Effective distribution outage cause identification can help expedite the restoration procedure and improve the system availability. The fuzzy classification E-algorithm and the immune system inspired classification algorithm, artificial immune recognition system (AIRS), have demonstrated good capabilities in outage cause identification, especially with the existence of imbalanced data. E-algorithm extracts inference rules but is computational demanding; AIRS has the quick searching capability but is lack of rule extraction capability. In this paper, fuzzy artificial immune recognition system (FAIRS) has been proposed to take advantage of the strengths of E-algorithm and AIRS. FAIRS is applied to Duke Energy outage data for cause identification using three major customer interruption causes (tree, animal, and lightning) as prototypes; and FAIRS achieves comparable fault diagnosis performance with two base algorithms while being able to extract linguistic rules to explain the inference within significantly reduced computing time than E-algorithm. | 
    
|---|---|
| AbstractList | Effective distribution outage cause identification can help expedite the restoration procedure and improve the system availability. The fuzzy classification E-algorithm and the immune system inspired classification algorithm, artificial immune recognition system (AIRS), have demonstrated good capabilities in outage cause identification, especially with the existence of imbalanced data. E-algorithm extracts inference rules but is computational demanding; AIRS has the quick searching capability but is lack of rule extraction capability. In this paper, fuzzy artificial immune recognition system (FAIRS) has been proposed to take advantage of the strengths of E-algorithm and AIRS. FAIRS is applied to Duke Energy outage data for cause identification using three major customer interruption causes (tree, animal, and lightning) as prototypes; and FAIRS achieves comparable fault diagnosis performance with two base algorithms while being able to extract linguistic rules to explain the inference within significantly reduced computing time than E-algorithm. | 
    
| Author | Le Xu Mo-Yuen Chow  | 
    
| Author_xml | – sequence: 1 surname: Le Xu fullname: Le Xu organization: Quanta Technol., Raleigh, NC – sequence: 2 surname: Mo-Yuen Chow fullname: Mo-Yuen Chow  | 
    
| BookMark | eNo1UE1Lw0AUXLGCbe1d8LJ_IPVtNptkj1JbFQoK9l5ekt32abKR7OaQ_nqj1tMwHwzMzNjEtc4wditgKQTo-7f1-zIGyJeJ0mmm5QWbiSROEqEh1ZdsobP8nyuYsKnQMo6UEtk1m3n_AaDk6E_Z5yP50FHRB2odt9jXgVeEB9d68rz35A4c-XEoOqo41oe2o3BseGu57U-ngZc1ek-WSvwtQDemuvAjENacmqZ3hvvBB9P4G3ZlsfZmccY5223Wu9VztH19elk9bCPSECJENHGJuQQoEqkKQCsyEwMqEFBlppCY5BZtLqtUZLkFU427RIHCqNKmRs7Z3V8tGWP2Xx012A3780_yGzCoXu8 | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IH CBEJK RIE RIO  | 
    
| DOI | 10.1109/PES.2008.4596793 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISBN | 1424419069 9781424419067  | 
    
| EndPage | 6 | 
    
| ExternalDocumentID | 4596793 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IM AAJGR ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS  | 
    
| ID | FETCH-LOGICAL-i90t-aaae2ca8300b435b0af17e20a5010d7eb3a48faf83d6178f0ed5511ba1e5cf6e3 | 
    
| IEDL.DBID | RIE | 
    
| ISBN | 9781424419050 1424419050  | 
    
| ISSN | 1932-5517 | 
    
| IngestDate | Wed Aug 27 02:21:42 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i90t-aaae2ca8300b435b0af17e20a5010d7eb3a48faf83d6178f0ed5511ba1e5cf6e3 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | ieee_primary_4596793 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2008-July | 
    
| PublicationDateYYYYMMDD | 2008-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2008 text: 2008-July  | 
    
| PublicationDecade | 2000 | 
    
| PublicationTitle | 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century | 
    
| PublicationTitleAbbrev | PES | 
    
| PublicationYear | 2008 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0053142 ssj0000453218  | 
    
| Score | 1.6863083 | 
    
| Snippet | Effective distribution outage cause identification can help expedite the restoration procedure and improve the system availability. The fuzzy classification... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1 | 
    
| SubjectTerms | Accuracy Animals Artificial Immune Systems Classification algorithms DH-HEMTs Fault diagnosis Fuzzy Classification Lightning Power Distribution Systems Training  | 
    
| Title | Distribution fault diagnosis using a hybrid algorithm of fuzzy classification and artificial immune systems | 
    
| URI | https://ieeexplore.ieee.org/document/4596793 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4AJ734AOM7e_BoYftuzwohJhgSMeFGZruz0IDUQHuAX-9uX6jx4K1tNmm7O8l8M_N9M4Q8REIwHkBoRDpcVfhWGNwCaQQg0PE86aPUecjRqzd8d16m7rRBHmstDCLm5DPs6su8li-SKNOpsp7jhp6ypyZp-oFXaLXqfIqCJrZ1qCAo08oH52h8YihU4FeiLuUA3brXU3Vf1S9Z2Bv33wqGZfmyH1NXcqczOCGj6nMLrsmym6W8G-1_dXL87_-cks5B3kfHteM6Iw1cn5Pjb50J22T5rBvqlrOwqIRslVJRsPLiLdVk-TkFuthpvReF1TzZxOnigyaSymy_39FIg3LNQsoPnsJardrktCRl7zTWohSkRRfpbYdMBv3J09Ao5zIYcchSAwDQiiCwGeMKbHEG0vTRYuCq2E74KjoHJ5AgA1to_aFkKNQBmBxMdCPpoX1BWutkjZeE2grA6VIPM7kKyxhyGUYKLwGXtsct7l6Rtt612WfReWNWbtj1349vyFHB5tBk2lvSSjcZ3inIkPL73Fa-AONMvPo | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHtSLDzC-3YNHC9t3e1YIKhASMeFGZru70ICtgfYAv97dvnzEg7e22aTt7iTzzcz3zSB0FzBGqAe-FqhwVeJbplEDhOYB45bjCJcLlYccDJ3em_U8sSc1dF9pYTjnGfmMt9RlVstncZCqVFnbsn1H2tMO2rUty7JztVaVUZHgxDS-agjSuLLROQqhaBIXuKWsS7pAu-r2VN6XFUzit0ed15xjWbzux9yVzO10D9Gg_OCcbbJopQltBdtfvRz_-0dHqPkl8MOjynUdoxqPTtDBt96EDbR4VC11i2lYWEC6TDDLeXnhGiu6_AwDnm-U4gvDchavwmT-jmOBRbrdbnCgYLniIWVHjyGSq1YZMUlaPA6VLIXjvI_0uonG3c74oacVkxm00CeJBgDcCMAzCaESblECQne5QcCW0R1zZXwOlidAeCZTCkRBOJMHoFPQuR0Ih5unqB7FET9D2JQQThV7iE5lYEY4FX4gERNQYTrUoPY5aqhdm37kvTemxYZd_P34Fu31xoP-tP80fLlE-zm3Q1Frr1A9WaX8WgKIhN5kdvMJ-avARw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+IEEE+Power+and+Energy+Society+General+Meeting+-+Conversion+and+Delivery+of+Electrical+Energy+in+the+21st+Century&rft.atitle=Distribution+fault+diagnosis+using+a+hybrid+algorithm+of+fuzzy+classification+and+artificial+immune+systems&rft.au=Le+Xu&rft.au=Mo-Yuen+Chow&rft.date=2008-07-01&rft.pub=IEEE&rft.isbn=9781424419050&rft.issn=1932-5517&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FPES.2008.4596793&rft.externalDocID=4596793 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-5517&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-5517&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-5517&client=summon |