An EEG-based method for detecting drowsy driving state

The characteristic of EEG signal in drowsy driving was researched. A method based on power spectrum analysis and FastICA algorithm was proposed to determining the fatigue degree. In a driving simulation system, the EEG signals of subjects were captured by instrument NT-9200 in two states, one state...

Full description

Saved in:
Bibliographic Details
Published in2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery Vol. 5; pp. 2164 - 2167
Main Authors Li, Ming-ai, Zhang, Cheng, Yang, Jin-Fu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2010
Subjects
Online AccessGet full text
ISBN1424459311
9781424459315
DOI10.1109/FSKD.2010.5569757

Cover

Abstract The characteristic of EEG signal in drowsy driving was researched. A method based on power spectrum analysis and FastICA algorithm was proposed to determining the fatigue degree. In a driving simulation system, the EEG signals of subjects were captured by instrument NT-9200 in two states, one state was sober, and the other was drowsy. The multi channel signals were analyzed with FastICA algorithm, to remove ocular electric, myoelectric and power frequency interferences. Power spectral densities were calculated after FFT, and the fatigue index F was gotten finally. Experimental results show that the method presented in this paper can be used to determine the drowsiness degree of EEG signal effectually.
AbstractList The characteristic of EEG signal in drowsy driving was researched. A method based on power spectrum analysis and FastICA algorithm was proposed to determining the fatigue degree. In a driving simulation system, the EEG signals of subjects were captured by instrument NT-9200 in two states, one state was sober, and the other was drowsy. The multi channel signals were analyzed with FastICA algorithm, to remove ocular electric, myoelectric and power frequency interferences. Power spectral densities were calculated after FFT, and the fatigue index F was gotten finally. Experimental results show that the method presented in this paper can be used to determine the drowsiness degree of EEG signal effectually.
Author Li, Ming-ai
Zhang, Cheng
Yang, Jin-Fu
Author_xml – sequence: 1
  givenname: Ming-ai
  surname: Li
  fullname: Li, Ming-ai
  organization: Beijing University of Technology, Institute of Electronic Information and Control Engineering, China
– sequence: 2
  givenname: Cheng
  surname: Zhang
  fullname: Zhang, Cheng
  organization: Beijing University of Technology, Institute of Electronic Information and Control Engineering, China
– sequence: 3
  givenname: Jin-Fu
  surname: Yang
  fullname: Yang, Jin-Fu
  organization: Beijing University of Technology, Institute of Electronic Information and Control Engineering, China
BookMark eNpFj8FKAzEURSMqaGs_QNzkB6bmJXmTZFnqtEoLXdh9SSdvNGJnZBKU_r1TLHg3h7M5cEfsqu1aYuwexBRAuMfF6-ppKsWgiKUzaC7YCLTUGp1S9vJfAG7YJKUPMUyjFApvWTlreVUti71PFPiB8nsXeNP1PFCmOsf2jYe--0nHAfH7pCn7THfsuvGfiSZnjtl2UW3nz8V6s3yZz9ZFdCIX3usg6qBMiUIFAFmXtUaFaI0mp632QloFVnoNVjTG1WTAkHIQ9hYbp8bs4S8biWj31ceD74-78031C4YwRdY
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/FSKD.2010.5569757
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1424459338
9781424459339
1424459346
9781424459346
EndPage 2167
ExternalDocumentID 5569757
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-aa4d0cd376503d112c6c45355874e9484a0283182a4180f79ce717e391db85f93
IEDL.DBID RIE
ISBN 1424459311
9781424459315
IngestDate Wed Aug 27 02:32:21 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-aa4d0cd376503d112c6c45355874e9484a0283182a4180f79ce717e391db85f93
PageCount 4
ParticipantIDs ieee_primary_5569757
PublicationCentury 2000
PublicationDate 2010-Aug.
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: 2010-Aug.
PublicationDecade 2010
PublicationTitle 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery
PublicationTitleAbbrev FSKD
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452035
Score 1.5758113
Snippet The characteristic of EEG signal in drowsy driving was researched. A method based on power spectrum analysis and FastICA algorithm was proposed to determining...
SourceID ieee
SourceType Publisher
StartPage 2164
SubjectTerms Brain modeling
Driver circuits
Electrodes
electroencephalograph(EEG)
Electroencephalography
Fatigue
fatigue driving
fatigue index
Independent component analysis
independent component analysis (ICA)
Indexes
spectrum analysis
Title An EEG-based method for detecting drowsy driving state
URI https://ieeexplore.ieee.org/document/5569757
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH9sO3lS2cRvcvBot7RJmuYoujmUieCE3UbavMIQOtH2oH-9L203UTx4ygchJCnlff5-D-BCaMTcZFEQZY4MFHSOfimraChpRthI1XRNs4d4-izvFmrRgcstFgYR6-QzHPpuHct366zyrrKRUrHRSnehq5O4wWpt_SmeGpwLtcFuKSPCcEPp1I5VG9UMuRlNnu5vmsSudtMf1VVq4TLZhdnmWE1OycuwKtNh9vmLsfG_596DwTeMjz1uBdQ-dLDoQ3xVsPH4NvDiy7GmgDQjzZU59PEEWsgcmebvH9SsvLeB1ZijAcwn4_n1NGiLJwQrw8vAWuk4PbYmDUw4UqqyOJPKc6lriUYm0nrFgowLK8OE59pkSIYdChO6NFG5EQfQK9YFHgLLuSQzKuKY0KapiG0ecVpPml_uyfX5EfT9lZevDT3Gsr3t8d_TJ7DTBOB9Dt0p9Mq3Cs9Irpfpef1BvwDbGJwS
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_MedCTyiZ-m4NHu6VN0jZH0c3pPhCcsNtIm1cQoRPtDvrX-9J2E8WDp3wQQpJS3ufv9wAuRISY6TTwgtSSgYLW0i9lFA0lzQgTqJKuaTwJB0_yfqZmDbhcY2EQsUw-w47rlrF8u0iXzlXWVSrUkYo2YFNJKVWF1lp7VBw5OBdqhd5SWvj-itSpHqs6rulz3e0_Dm-q1K562x_1VUrx0t-B8epgVVbJS2dZJJ308xdn439PvgvtbyAfe1iLqD1oYN6C8Cpnvd6t5wSYZVUJaUa6K7PoIgq0kFkyzt8_qHl2_gZWoo7aMO33ptcDry6f4D1rXnjGSMvpuSPSwYQltSoNU6kcm3okUctYGqdakHlhpB_zLNIpkmmHQvs2iVWmxT4080WOB8AyLsmQCjjGtGkiQpMFnNaT7pc5en1-CC135flrRZAxr2979Pf0OWwNpuPRfHQ3GR7DdhWOdxl1J9As3pZ4SlK-SM7Kj_sFQsGfXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+Seventh+International+Conference+on+Fuzzy+Systems+and+Knowledge+Discovery&rft.atitle=An+EEG-based+method+for+detecting+drowsy+driving+state&rft.au=Li%2C+Ming-ai&rft.au=Zhang%2C+Cheng&rft.au=Yang%2C+Jin-Fu&rft.date=2010-08-01&rft.pub=IEEE&rft.isbn=9781424459315&rft.volume=5&rft.spage=2164&rft.epage=2167&rft_id=info:doi/10.1109%2FFSKD.2010.5569757&rft.externalDocID=5569757
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424459315/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424459315/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424459315/sc.gif&client=summon&freeimage=true