EM algorithm based intervertebral disc segmentation on MR images

Image segmentation is well known in partitioning a digital image into several segments. Recent days lower back pain in human being increases and so the lumber spine pathology detection becomes a predominant research area in Computer Aided Diagnosis (CAD) system. In the process of lumbar spine pathol...

Full description

Saved in:
Bibliographic Details
Published in2017 International Conference on Computer, Communication and Signal Processing (ICCCSP) pp. 1 - 6
Main Authors Beulah, A., Sharmila, T. Sree
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.01.2017
Subjects
Online AccessGet full text
DOI10.1109/ICCCSP.2017.7944069

Cover

Abstract Image segmentation is well known in partitioning a digital image into several segments. Recent days lower back pain in human being increases and so the lumber spine pathology detection becomes a predominant research area in Computer Aided Diagnosis (CAD) system. In the process of lumbar spine pathology detection, the segmentation of the Intervertebral Disc (IVD) is the major step as it identifies the IVDs or the boundaries of the IVDs either normal or abnormal in images. When the axial or the sagittal View of lumbar spine MR image is given as input, this proposed work segments the IVD in both the axial and sagittal views. The segmentation of IVD is a four stage process. First, Expectation-Maximization (EM) segmentation is performed on the MR Image. EM segmentation yields an advantage over K-means with the case of the size of clustering. The second stage is to carry out the morphological operators and third, apply edge detection method and obtain the edges. The final stage is to remove unwanted objects from the obtained output image. If this proposed segmentation is utilized as part of the CAD, the experts will be benefited for localizing the IVD and to diagnose the IVD disease.
AbstractList Image segmentation is well known in partitioning a digital image into several segments. Recent days lower back pain in human being increases and so the lumber spine pathology detection becomes a predominant research area in Computer Aided Diagnosis (CAD) system. In the process of lumbar spine pathology detection, the segmentation of the Intervertebral Disc (IVD) is the major step as it identifies the IVDs or the boundaries of the IVDs either normal or abnormal in images. When the axial or the sagittal View of lumbar spine MR image is given as input, this proposed work segments the IVD in both the axial and sagittal views. The segmentation of IVD is a four stage process. First, Expectation-Maximization (EM) segmentation is performed on the MR Image. EM segmentation yields an advantage over K-means with the case of the size of clustering. The second stage is to carry out the morphological operators and third, apply edge detection method and obtain the edges. The final stage is to remove unwanted objects from the obtained output image. If this proposed segmentation is utilized as part of the CAD, the experts will be benefited for localizing the IVD and to diagnose the IVD disease.
Author Sharmila, T. Sree
Beulah, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Beulah
  fullname: Beulah, A.
  email: beulaharul@ssn.edu.in
  organization: Dept. of CSE, SSN Coll. of Eng., Chennai, India
– sequence: 2
  givenname: T. Sree
  surname: Sharmila
  fullname: Sharmila, T. Sree
  email: sreesharmilat@ssn.edu.in
  organization: Dept. of IT, SSN Coll. of Eng., Chennai, India
BookMark eNotj81Kw0AURkewC619gm7mBRLvZCYzuTslVC20KLb7cju5iQP5kckg-PYWLHxwdufw3YvbcRpZiLWCXCnAx21d14ePvADlcofGgMUbsUJXqRIQtFO2uBNPm72kvptiSF-DPNPMjQxj4vjDMfE5Ui-bMHs5czfwmCiFaZSX7T9lGKjj-UEsWupnXl25FMeXzbF-y3bvr9v6eZcFhJRhW5VYlgbZkgXwhrGwzhlNxqL3qmrJFI6hqUDbVrGhsiHVsCdkKgzqpVj_awMzn77jJR5_T9db-g8JvEbA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCCSP.2017.7944069
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509037162
1509037160
EndPage 6
ExternalDocumentID 7944069
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-9f8595549e6a600c4e9267743a469cc18fa427e0d8036f1e4a5da1deca9ea2493
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:04 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-9f8595549e6a600c4e9267743a469cc18fa427e0d8036f1e4a5da1deca9ea2493
PageCount 6
ParticipantIDs ieee_primary_7944069
PublicationCentury 2000
PublicationDate 2017-Jan.
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-Jan.
PublicationDecade 2010
PublicationTitle 2017 International Conference on Computer, Communication and Signal Processing (ICCCSP)
PublicationTitleAbbrev ICCCSP
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6337007
Snippet Image segmentation is well known in partitioning a digital image into several segments. Recent days lower back pain in human being increases and so the lumber...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Biomedical imaging
Clustering algorithms
Computer Aided Diagnosis
Computers
EM segmentation
Image edge detection
Image segmentation
Intervertebral Disc
Lower back pain. Magnetic Resonance Image
Morphological operators
Signal processing algorithms
Spine
Title EM algorithm based intervertebral disc segmentation on MR images
URI https://ieeexplore.ieee.org/document/7944069
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7anjyptOKbHDy6231mk5uwtFRhpWiF3koes7XYbqXdXvz1JrtrRfEg5BBCIAkT8uVL5psBuOGh9GMRxE4uhedETCtH-pI6PAmpQduA5VU6oOyRjl6ih2k8bcHtXguDiJXzGbq2Wv3l67Xa2aeyvtk7VqjZhnbCaK3VagIJ-R7v36dp-jy23lqJ2_T8kTKlQozhIWRfY9WOIm_urpSu-vgVhvG_kzmC3rc2j4z3qHMMLSy6cDfIiFjO14bpv66IRSZNFrU346a0X8NLYuW3ZIvzVSM2Kogp2RNZrMyJsu3BZDiYpCOnyY3gLLhXOjy3cckMt0MqzJVFRcgDam5yoTB0Vymf5SIKEvQ0MwiV-xiJWAtfoxIchWFc4Ql0inWBp0C08KQyPCYx3SPUiiNTVj7LWUh5Hsoz6NrFz97r6BezZt3nfzdfwIE1QP1IcQmdcrPDKwPbpbyu7PUJPUyZhw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPOhJDRi_7cGjGxvrPnozWSCojBDFhBvpxxsSYRgYF_96221iNB5MemiaJm3zmv76a9_vPYAb5gnX523fSgV3LBopaQlXBBYLvUCjbTtKi3RAySDovdCHsT-uwe1WC4OIhfMZ2qZa_OWrpdyYp7KW3jtGqLkDuz6l1C_VWlUoIddhrfs4jp-Hxl8rtKu-P5KmFJjRPYDka7TSVeTN3uTClh-_AjH-dzqH0PxW55HhFneOoIZZA-46CeHz6VJz_dcFMdikyKz0Z1zl5nN4TowAl6xxuqjkRhnRJXkis4U-U9ZNGHU7o7hnVdkRrBlzcoulJjKZZncYcH1pkRRZO9B3OY9rwiulG6WctkN0VKQxKnWRcl9xV6HkDLnmXN4x1LNlhidAFHeE1Ewm1N0pKskwkkZAyyIvYKknTqFhFj95L-NfTKp1n_3dfA17vVHSn_TvB4_nsG-MUT5ZXEA9X23wUoN4Lq4K230CeDec1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+International+Conference+on+Computer%2C+Communication+and+Signal+Processing+%28ICCCSP%29&rft.atitle=EM+algorithm+based+intervertebral+disc+segmentation+on+MR+images&rft.au=Beulah%2C+A.&rft.au=Sharmila%2C+T.+Sree&rft.date=2017-01-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICCCSP.2017.7944069&rft.externalDocID=7944069