Complex ZNN and GNN models for time-varying complex quadratic programming subject to equality constraints

Zhang neural network (ZNN) has shown powerful abilities to solve a great variety of time-varying problems in the real domain. In this paper, to solve the time-varying complex quadratic programming (QP) problems in the complex domain, a new type of complex-valued ZNN is further developed and investig...

Full description

Saved in:
Bibliographic Details
Published in2016 12th World Congress on Intelligent Control and Automation (WCICA) pp. 210 - 215
Main Authors Sitong Ding, Min Yang, Mingzhi Mao, Lin Xiao, Yunong Zhang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2016
Subjects
Online AccessGet full text
DOI10.1109/WCICA.2016.7578305

Cover

Abstract Zhang neural network (ZNN) has shown powerful abilities to solve a great variety of time-varying problems in the real domain. In this paper, to solve the time-varying complex quadratic programming (QP) problems in the complex domain, a new type of complex-valued ZNN is further developed and investigated. Specifically, by defining two different complex-valued error functions (termed Zhang functions), two complex ZNN models are proposed and investigated for solving the time-varying complex QP subject to complex-valued linear-equality constraints. It is theoretically proved that such two complex ZNN models globally and exponentially converge to the time-varying theoretical optimal solution of the time-varying complex QP. For comparison, the conventional gradient neural network (GNN) is developed from the real to the complex domains and then is exploited for solving the time-varying complex QP problems. Computational simulation results verify the efficacy of complex ZNN models for solving the time-varying complex QP problems. Besides, the superiorities of complex ZNN models are substantiated, as compared with complex GNN ones.
AbstractList Zhang neural network (ZNN) has shown powerful abilities to solve a great variety of time-varying problems in the real domain. In this paper, to solve the time-varying complex quadratic programming (QP) problems in the complex domain, a new type of complex-valued ZNN is further developed and investigated. Specifically, by defining two different complex-valued error functions (termed Zhang functions), two complex ZNN models are proposed and investigated for solving the time-varying complex QP subject to complex-valued linear-equality constraints. It is theoretically proved that such two complex ZNN models globally and exponentially converge to the time-varying theoretical optimal solution of the time-varying complex QP. For comparison, the conventional gradient neural network (GNN) is developed from the real to the complex domains and then is exploited for solving the time-varying complex QP problems. Computational simulation results verify the efficacy of complex ZNN models for solving the time-varying complex QP problems. Besides, the superiorities of complex ZNN models are substantiated, as compared with complex GNN ones.
Author Mingzhi Mao
Sitong Ding
Yunong Zhang
Min Yang
Lin Xiao
Author_xml – sequence: 1
  surname: Sitong Ding
  fullname: Sitong Ding
  organization: Sch. of Inf. Sci. & Technol., Sun Yat-sen Univ., Guangzhou, China
– sequence: 2
  surname: Min Yang
  fullname: Min Yang
  organization: Sch. of Inf. Sci. & Technol., Sun Yat-sen Univ., Guangzhou, China
– sequence: 3
  surname: Mingzhi Mao
  fullname: Mingzhi Mao
  organization: Sch. of Inf. Sci. & Technol., Sun Yat-sen Univ., Guangzhou, China
– sequence: 4
  surname: Lin Xiao
  fullname: Lin Xiao
  organization: Sch. of Inf. Sci. & Technol., Sun Yat-sen Univ., Guangzhou, China
– sequence: 5
  surname: Yunong Zhang
  fullname: Yunong Zhang
  email: zhynong@mail.sysu.edu.cn
  organization: Sch. of Inf. Sci. & Technol., Sun Yat-sen Univ., Guangzhou, China
BookMark eNotj01PwyAcxjHRg5t-Ab3wBVqhQFuOptFpsszLEhMvC4U_C6ZApcy4b2-NPT2H5yW_Z4UuQwyA0B0lJaVEPrx3r91jWRFal41oWkbEBVpRQSSpmGjFNXJd9OMAP_hjt8MqGLyZ1UcDw4RtTDg7D8W3SmcXjlgv2a-TMkllp_GY4jEp7__c6dR_gs44RwxzYnD5PDfClJNyIU836MqqYYLbRddo__y0716K7dtmhtwWTpJcyL61rCfKAiOVBg1W11o2tdFUU8YJ50TWRjHFG9CVkUpwWlEtBe8pr61ia3T_P-sA4DAm52f4w3Ke_QIZclYe
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WCICA.2016.7578305
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEL(IEEE/IET Electronic Library )
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509023585
9781467384148
9781509023585
1467384143
EndPage 215
ExternalDocumentID 7578305
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-9b8f3b0afe302cecefc6c976dc1c134044096da3a47ec2d9a54121c954b146fa3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:48 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-9b8f3b0afe302cecefc6c976dc1c134044096da3a47ec2d9a54121c954b146fa3
PageCount 6
ParticipantIDs ieee_primary_7578305
PublicationCentury 2000
PublicationDate 2016-June
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-June
PublicationDecade 2010
PublicationTitle 2016 12th World Congress on Intelligent Control and Automation (WCICA)
PublicationTitleAbbrev WCICA
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6852194
Snippet Zhang neural network (ZNN) has shown powerful abilities to solve a great variety of time-varying problems in the real domain. In this paper, to solve the...
SourceID ieee
SourceType Publisher
StartPage 210
SubjectTerms Analytical models
Computational modeling
Convergence
Mathematical model
Neural networks
Simulation
Time-varying systems
Title Complex ZNN and GNN models for time-varying complex quadratic programming subject to equality constraints
URI https://ieeexplore.ieee.org/document/7578305
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT4MwFG_mTp7UbMbv9ODRMqClwNEszmni4mHGxcvSvpZkUZluYNS_3j5gMxoPnmigBPJeyivt74OQUx1A7IJvmIzBZ-7_yzAFPjCIjK-FBmEBicI3Izm8E9eTaNIiZ2sujLW2Ap9ZD5vVXr6ZQ4lLZT3UXucoWLoRJ7Lmaq14MH7au-9f9c8RrCW9puMPx5SqYAy2yM3qUTVO5NErC-3B5y8Vxv--yzbpflPz6O266OyQls07ZIaj-sm-04fRiKrc0Et3rDxultRNSikayLM3tUBKE4Wm72upDKYfaIPResary1Ljygwt5tTWhMsPdwfKzKpZXiy7ZDy4GPeHrPFQYLPUL1iqk4xrX2WW-yG4uGcgwc1ADAQQcIF-06k0iisRWwhNqiIRhAGkkdDuE5opvkva-Ty3e4SaNAmk5kYHWShkZFTMk1iYOORgpZZ2n3QwStOXWiVj2gTo4O_Th2QTM1WDro5Iu1iU9tiV90KfVHn9AuFAqoA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT4MwFG8WPehJzWb8tgePsgEtZRzN4tx0Ix5mXLws7WtJFpXpBkb96-0DNqPx4KlNKYG8Fl4pvw9CzpQHoQ2-dkQIrmO_v7QjwQUHAu0qroAbQKLwMBa9O349DsY1cr7iwhhjCvCZaWK1-JevZ5DjVlkLtdcZCpauB5zzoGRrLZkwbtS67_Q7FwjXEs2q6w_PlCJldLfIcHmxEiny2Mwz1YTPXzqM_72bbdL4JufR21Xa2SE1k9bJFJ_rJ_NOH-KYylTTK1sWLjcLapelFC3knTc5R1ITharvay41TgCgFUrrGY8ucoV7MzSbUVNSLj_sGSg0K6dptmiQUfdy1Ok5lYuCM43czIlUO2HKlYlhrg828gkIsGsQDR54jKPjdCS0ZJKHBnwdyYB7vgdRwJV9iSaS7ZK1dJaaPUJ11PaEYlp5ic9FoGXI2iHXoc_ACCXMPqljlCYvpU7GpArQwd_Np2SjNxoOJoN-fHNINnHUSgjWEVnL5rk5tsk-UyfFGH8B-TCtzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+12th+World+Congress+on+Intelligent+Control+and+Automation+%28WCICA%29&rft.atitle=Complex+ZNN+and+GNN+models+for+time-varying+complex+quadratic+programming+subject+to+equality+constraints&rft.au=Sitong+Ding&rft.au=Min+Yang&rft.au=Mingzhi+Mao&rft.au=Lin+Xiao&rft.date=2016-06-01&rft.pub=IEEE&rft.spage=210&rft.epage=215&rft_id=info:doi/10.1109%2FWCICA.2016.7578305&rft.externalDocID=7578305