UKF-based training algorithm for feed-forward neural networks with application to XOR classification problem
This paper uses the recently developed unscented Kalman filter (UKF) to construct a new training algorithm for feed-forward neural networks. This UKF-based training algorithm has the merits of being more accurate and not calculating the derivatives when compared to the training algorithms based on t...
Saved in:
| Published in | 2012 8th International Conference on Natural Computation pp. 316 - 319 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.05.2012
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 9781457721304 1457721309 |
| ISSN | 2157-9555 |
| DOI | 10.1109/ICNC.2012.6234549 |
Cover
| Abstract | This paper uses the recently developed unscented Kalman filter (UKF) to construct a new training algorithm for feed-forward neural networks. This UKF-based training algorithm has the merits of being more accurate and not calculating the derivatives when compared to the training algorithms based on the extended Kalman filter (EKF). Moreover, the UKF can converge more rapidly than the EKF, so the proposed UKF-based algorithm is more suitable for real-time implementation of neural training algorithms. At the end of the paper, the presented algorithm is applied to the XOR classification problem. The classification results demonstrate that the new UKF-based training algorithm performs well in solving the nonlinear XOR classification problem and has superiority over the EKF-based algorithm. |
|---|---|
| AbstractList | This paper uses the recently developed unscented Kalman filter (UKF) to construct a new training algorithm for feed-forward neural networks. This UKF-based training algorithm has the merits of being more accurate and not calculating the derivatives when compared to the training algorithms based on the extended Kalman filter (EKF). Moreover, the UKF can converge more rapidly than the EKF, so the proposed UKF-based algorithm is more suitable for real-time implementation of neural training algorithms. At the end of the paper, the presented algorithm is applied to the XOR classification problem. The classification results demonstrate that the new UKF-based training algorithm performs well in solving the nonlinear XOR classification problem and has superiority over the EKF-based algorithm. |
| Author | Jiaxiang Yu Fuwei Li Xiaozhen Zhao |
| Author_xml | – sequence: 1 surname: Xiaozhen Zhao fullname: Xiaozhen Zhao organization: Training Dept., Dalian Naval Acad., Dalian, China – sequence: 2 surname: Jiaxiang Yu fullname: Jiaxiang Yu email: lxhyjxok@163.com organization: Training Dept., Dalian Naval Acad., Dalian, China – sequence: 3 surname: Fuwei Li fullname: Fuwei Li organization: Training Dept., Dalian Naval Acad., Dalian, China |
| BookMark | eNpVUEtLAzEYjFjBWvsDxEv-wNYkm8fmKIuPYrEgFbyVb_Oo0XR3SVaK_94F68G5zINhDnOBJm3XOoSuKFlQSvTNsn6uF4xQtpCs5ILrEzTXqqJcKMVoyarTf57wCZoyKlShhRDnaJ7zBxmhBK0kn6L4-nRfNJCdxUOC0IZ2hyHuuhSG9z32XcLeOVuM4gDJ4tZ9JYgjDYcufWZ8GGsY-j4GA0PoWjx0-G39gk2EnIP_S_vUNdHtL9GZh5jd_MgztLm_29SPxWr9sKxvV0XQZCi0ksQYzSvGlHWUW81JKZxvlFWVBC3BcwesMZYRAE-VMbLkIAT1VFZGlzN0_TsbnHPbPoU9pO_t8a7yB6DVX1c |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICNC.2012.6234549 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781457721328 1457721325 9781457721335 1457721333 |
| EndPage | 319 |
| ExternalDocumentID | 6234549 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i90t-9760cc948227de14d94035efb7d786a96af4ea2bcd20aaf17cc634a551f168c93 |
| IEDL.DBID | RIE |
| ISBN | 9781457721304 1457721309 |
| ISSN | 2157-9555 |
| IngestDate | Wed Aug 27 04:32:30 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-9760cc948227de14d94035efb7d786a96af4ea2bcd20aaf17cc634a551f168c93 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_6234549 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-May |
| PublicationDateYYYYMMDD | 2012-05-01 |
| PublicationDate_xml | – month: 05 year: 2012 text: 2012-May |
| PublicationDecade | 2010 |
| PublicationTitle | 2012 8th International Conference on Natural Computation |
| PublicationTitleAbbrev | ICNC |
| PublicationYear | 2012 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000751864 ssj0003177709 |
| Score | 1.4944282 |
| Snippet | This paper uses the recently developed unscented Kalman filter (UKF) to construct a new training algorithm for feed-forward neural networks. This UKF-based... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 316 |
| SubjectTerms | Classification algorithms Covariance matrix extended Kalman filter Kalman filters Mathematical model Neural networks Training unscented Kalman filter Vectors XOR classification problem |
| Title | UKF-based training algorithm for feed-forward neural networks with application to XOR classification problem |
| URI | https://ieeexplore.ieee.org/document/6234549 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELXanjgBahG7fOCI0yyOl3NFVUAtCLVSb5XjBSpKU5X0wtczTtKyiAOn2FaUxY7y3njezCB0BahATcwzEmmmCRVUEckjS2gcS6OEARPaG4rDERtM6N00nTbQ9S4Wxlpbis9s4JulL9_keuO3yroA1RTsmSZqcsGqWK3dfkro_Qc19fd9wEXOS4UHgJr3UqZpGdeVAp2E_7bcpnuq-7T2eEah7N72Rj0v-oqD-oY_Kq-UwNPfR8PtI1d6k9dgU2SB_viVzfG_73SAOl8hfvhxB16HqGGXbbSY3PeJxzWDt6UjsFo85-t58fKGgd5iB-cTaHitLfa5MNUCDqWS_B37PV38zSOOixxPH56w9gzdS5Kq0bqGTQeN-zfj3oDU5RjIXIYFLCELtZYUGAU3NqJG0jBJrcu4gdVQkilHrYozbeJQKRdxrVlCFTAyFzGhZXKEWst8aY8Rtg4upTInEp3RVBmRSi2YcBaMSaOFO0FtP1GzVZVwY1bP0enfw2dozy9WpUI8R61ivbEXwBSK7LL8RD4BNOC4CQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKOcAJUIvY8YEjTrPYiX2uqFq6gFAr9VY5XgBRGlTSC1_POEnLIg6cYltRFjvKe-N5M4PQFaAC1WGSkkDFilBOJRFJYAgNQ6El12BCO0NxOIq7E3o7ZdMaut7EwhhjCvGZ8Vyz8OXrTK3cVlkLoJqCPbOFthmllJXRWpsdFd95ECry7_qAjElSaDwA1pyfkrEisosBoYQ_t1gnfKr6tPJ5Br5o9dqjtpN9hV51yx-1Vwro6eyh4fqhS8XJi7fKU099_Mrn-N-32kfNryA_fL-BrwNUM4sGmk_6HeKQTeN18Qgs54_Z8jl_esVAcLGF8wk0nNoWu2yYcg6HQkv-jt2uLv7mE8d5hqd3D1g5ju5ESeVoVcWmicadm3G7S6qCDORZ-DksYuwrJShwikSbgGpB_YgZmyY64bEUsbTUyDBVOvSltEGiVBxRCZzMBjFXIjpE9UW2MEcIGwuXkqnlkUopk5ozoXjMrQFzUituj1HDTdTsrUy5Mavm6OTv4Uu00x0PB7NBb9Q_Rbtu4UpN4hmq58uVOQfekKcXxefyCQoCu1Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+8th+International+Conference+on+Natural+Computation&rft.atitle=UKF-based+training+algorithm+for+feed-forward+neural+networks+with+application+to+XOR+classification+problem&rft.au=Xiaozhen+Zhao&rft.au=Jiaxiang+Yu&rft.au=Fuwei+Li&rft.date=2012-05-01&rft.pub=IEEE&rft.isbn=9781457721304&rft.issn=2157-9555&rft.spage=316&rft.epage=319&rft_id=info:doi/10.1109%2FICNC.2012.6234549&rft.externalDocID=6234549 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-9555&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-9555&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-9555&client=summon |