UKF-based training algorithm for feed-forward neural networks with application to XOR classification problem

This paper uses the recently developed unscented Kalman filter (UKF) to construct a new training algorithm for feed-forward neural networks. This UKF-based training algorithm has the merits of being more accurate and not calculating the derivatives when compared to the training algorithms based on t...

Full description

Saved in:
Bibliographic Details
Published in2012 8th International Conference on Natural Computation pp. 316 - 319
Main Authors Xiaozhen Zhao, Jiaxiang Yu, Fuwei Li
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2012
Subjects
Online AccessGet full text
ISBN9781457721304
1457721309
ISSN2157-9555
DOI10.1109/ICNC.2012.6234549

Cover

Abstract This paper uses the recently developed unscented Kalman filter (UKF) to construct a new training algorithm for feed-forward neural networks. This UKF-based training algorithm has the merits of being more accurate and not calculating the derivatives when compared to the training algorithms based on the extended Kalman filter (EKF). Moreover, the UKF can converge more rapidly than the EKF, so the proposed UKF-based algorithm is more suitable for real-time implementation of neural training algorithms. At the end of the paper, the presented algorithm is applied to the XOR classification problem. The classification results demonstrate that the new UKF-based training algorithm performs well in solving the nonlinear XOR classification problem and has superiority over the EKF-based algorithm.
AbstractList This paper uses the recently developed unscented Kalman filter (UKF) to construct a new training algorithm for feed-forward neural networks. This UKF-based training algorithm has the merits of being more accurate and not calculating the derivatives when compared to the training algorithms based on the extended Kalman filter (EKF). Moreover, the UKF can converge more rapidly than the EKF, so the proposed UKF-based algorithm is more suitable for real-time implementation of neural training algorithms. At the end of the paper, the presented algorithm is applied to the XOR classification problem. The classification results demonstrate that the new UKF-based training algorithm performs well in solving the nonlinear XOR classification problem and has superiority over the EKF-based algorithm.
Author Jiaxiang Yu
Fuwei Li
Xiaozhen Zhao
Author_xml – sequence: 1
  surname: Xiaozhen Zhao
  fullname: Xiaozhen Zhao
  organization: Training Dept., Dalian Naval Acad., Dalian, China
– sequence: 2
  surname: Jiaxiang Yu
  fullname: Jiaxiang Yu
  email: lxhyjxok@163.com
  organization: Training Dept., Dalian Naval Acad., Dalian, China
– sequence: 3
  surname: Fuwei Li
  fullname: Fuwei Li
  organization: Training Dept., Dalian Naval Acad., Dalian, China
BookMark eNpVUEtLAzEYjFjBWvsDxEv-wNYkm8fmKIuPYrEgFbyVb_Oo0XR3SVaK_94F68G5zINhDnOBJm3XOoSuKFlQSvTNsn6uF4xQtpCs5ILrEzTXqqJcKMVoyarTf57wCZoyKlShhRDnaJ7zBxmhBK0kn6L4-nRfNJCdxUOC0IZ2hyHuuhSG9z32XcLeOVuM4gDJ4tZ9JYgjDYcufWZ8GGsY-j4GA0PoWjx0-G39gk2EnIP_S_vUNdHtL9GZh5jd_MgztLm_29SPxWr9sKxvV0XQZCi0ksQYzSvGlHWUW81JKZxvlFWVBC3BcwesMZYRAE-VMbLkIAT1VFZGlzN0_TsbnHPbPoU9pO_t8a7yB6DVX1c
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICNC.2012.6234549
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781457721328
1457721325
9781457721335
1457721333
EndPage 319
ExternalDocumentID 6234549
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-9760cc948227de14d94035efb7d786a96af4ea2bcd20aaf17cc634a551f168c93
IEDL.DBID RIE
ISBN 9781457721304
1457721309
ISSN 2157-9555
IngestDate Wed Aug 27 04:32:30 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-9760cc948227de14d94035efb7d786a96af4ea2bcd20aaf17cc634a551f168c93
PageCount 4
ParticipantIDs ieee_primary_6234549
PublicationCentury 2000
PublicationDate 2012-May
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-May
PublicationDecade 2010
PublicationTitle 2012 8th International Conference on Natural Computation
PublicationTitleAbbrev ICNC
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000751864
ssj0003177709
Score 1.4944282
Snippet This paper uses the recently developed unscented Kalman filter (UKF) to construct a new training algorithm for feed-forward neural networks. This UKF-based...
SourceID ieee
SourceType Publisher
StartPage 316
SubjectTerms Classification algorithms
Covariance matrix
extended Kalman filter
Kalman filters
Mathematical model
Neural networks
Training
unscented Kalman filter
Vectors
XOR classification problem
Title UKF-based training algorithm for feed-forward neural networks with application to XOR classification problem
URI https://ieeexplore.ieee.org/document/6234549
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELXanjgBahG7fOCI0yyOl3NFVUAtCLVSb5XjBSpKU5X0wtczTtKyiAOn2FaUxY7y3njezCB0BahATcwzEmmmCRVUEckjS2gcS6OEARPaG4rDERtM6N00nTbQ9S4Wxlpbis9s4JulL9_keuO3yroA1RTsmSZqcsGqWK3dfkro_Qc19fd9wEXOS4UHgJr3UqZpGdeVAp2E_7bcpnuq-7T2eEah7N72Rj0v-oqD-oY_Kq-UwNPfR8PtI1d6k9dgU2SB_viVzfG_73SAOl8hfvhxB16HqGGXbbSY3PeJxzWDt6UjsFo85-t58fKGgd5iB-cTaHitLfa5MNUCDqWS_B37PV38zSOOixxPH56w9gzdS5Kq0bqGTQeN-zfj3oDU5RjIXIYFLCELtZYUGAU3NqJG0jBJrcu4gdVQkilHrYozbeJQKRdxrVlCFTAyFzGhZXKEWst8aY8Rtg4upTInEp3RVBmRSi2YcBaMSaOFO0FtP1GzVZVwY1bP0enfw2dozy9WpUI8R61ivbEXwBSK7LL8RD4BNOC4CQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKOcAJUIvY8YEjTrPYiX2uqFq6gFAr9VY5XgBRGlTSC1_POEnLIg6cYltRFjvKe-N5M4PQFaAC1WGSkkDFilBOJRFJYAgNQ6El12BCO0NxOIq7E3o7ZdMaut7EwhhjCvGZ8Vyz8OXrTK3cVlkLoJqCPbOFthmllJXRWpsdFd95ECry7_qAjElSaDwA1pyfkrEisosBoYQ_t1gnfKr6tPJ5Br5o9dqjtpN9hV51yx-1Vwro6eyh4fqhS8XJi7fKU099_Mrn-N-32kfNryA_fL-BrwNUM4sGmk_6HeKQTeN18Qgs54_Z8jl_esVAcLGF8wk0nNoWu2yYcg6HQkv-jt2uLv7mE8d5hqd3D1g5ju5ESeVoVcWmicadm3G7S6qCDORZ-DksYuwrJShwikSbgGpB_YgZmyY64bEUsbTUyDBVOvSltEGiVBxRCZzMBjFXIjpE9UW2MEcIGwuXkqnlkUopk5ozoXjMrQFzUituj1HDTdTsrUy5Mavm6OTv4Uu00x0PB7NBb9Q_Rbtu4UpN4hmq58uVOQfekKcXxefyCQoCu1Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+8th+International+Conference+on+Natural+Computation&rft.atitle=UKF-based+training+algorithm+for+feed-forward+neural+networks+with+application+to+XOR+classification+problem&rft.au=Xiaozhen+Zhao&rft.au=Jiaxiang+Yu&rft.au=Fuwei+Li&rft.date=2012-05-01&rft.pub=IEEE&rft.isbn=9781457721304&rft.issn=2157-9555&rft.spage=316&rft.epage=319&rft_id=info:doi/10.1109%2FICNC.2012.6234549&rft.externalDocID=6234549
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-9555&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-9555&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-9555&client=summon