Pediatric Seizure prediction from EEG signals based on unsupervised learning techniques using various distance measures

Epilepsy or recurrent seizures is one of the most common non communicable neurological disorder that is prevalent in today's world population are sudden outburst of excess electrical activity of the neurons. Epilepsy can be detected from Electroencephalogram (EEG) as EEG captures and presents t...

Full description

Saved in:
Bibliographic Details
Published in2017 1st International Conference on Electronics, Materials Engineering and Nano-Technology (IEMENTech) pp. 1 - 5
Main Authors Chakrabarti, Satarupa, Swetapadma, Aleena, Pattnaik, Prasant Kumar, Samajdar, Tina
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2017
Subjects
Online AccessGet full text
DOI10.1109/IEMENTECH.2017.8076983

Cover

Abstract Epilepsy or recurrent seizures is one of the most common non communicable neurological disorder that is prevalent in today's world population are sudden outburst of excess electrical activity of the neurons. Epilepsy can be detected from Electroencephalogram (EEG) as EEG captures and presents the electrical activity of the brain. Non-invasive EEG or scalp EEG is generally used where electrodes are placed on the scalp in order to record the brain activity. In this work a unsupervised machine learning technique is explored which is used to cluster and extract features from EEG recordings (noninvasive) to detect seizures. A patient specific approach is adopted on an open dataset (Physionet database) from where 51 seizure and 51 non seizure recordings of pediatric subjects (age ranging from lyrs to 12yrs) are considered for the related work. Unsupervised algorithm used here is the k-means algorithm to cluster the recordings into two distinct clusters of seizure and non-seizure data. When the performance of the algorithm was tested the algorithm worked with 91.43% accuracy from nearly 18, 00, 000 data taken from various subject. In future scope of work the accuracy of the method can be enhanced using appropriate features for distinctly identifying different intractable seizures according to their characteristics that are prevalent among pediatric patients.
AbstractList Epilepsy or recurrent seizures is one of the most common non communicable neurological disorder that is prevalent in today's world population are sudden outburst of excess electrical activity of the neurons. Epilepsy can be detected from Electroencephalogram (EEG) as EEG captures and presents the electrical activity of the brain. Non-invasive EEG or scalp EEG is generally used where electrodes are placed on the scalp in order to record the brain activity. In this work a unsupervised machine learning technique is explored which is used to cluster and extract features from EEG recordings (noninvasive) to detect seizures. A patient specific approach is adopted on an open dataset (Physionet database) from where 51 seizure and 51 non seizure recordings of pediatric subjects (age ranging from lyrs to 12yrs) are considered for the related work. Unsupervised algorithm used here is the k-means algorithm to cluster the recordings into two distinct clusters of seizure and non-seizure data. When the performance of the algorithm was tested the algorithm worked with 91.43% accuracy from nearly 18, 00, 000 data taken from various subject. In future scope of work the accuracy of the method can be enhanced using appropriate features for distinctly identifying different intractable seizures according to their characteristics that are prevalent among pediatric patients.
Author Chakrabarti, Satarupa
Swetapadma, Aleena
Samajdar, Tina
Pattnaik, Prasant Kumar
Author_xml – sequence: 1
  givenname: Satarupa
  surname: Chakrabarti
  fullname: Chakrabarti, Satarupa
  email: chakrabartisatarupa@gmail.com
– sequence: 2
  givenname: Aleena
  surname: Swetapadma
  fullname: Swetapadma, Aleena
  email: aleena.swetapadma@gmail.com
– sequence: 3
  givenname: Prasant Kumar
  surname: Pattnaik
  fullname: Pattnaik, Prasant Kumar
  email: patnaikprasant@gmail.com
– sequence: 4
  givenname: Tina
  surname: Samajdar
  fullname: Samajdar, Tina
  email: tina.samajdarfcs@kiit.ac.in
BookMark eNotkNtKw0AYhFfQC1t9AkH2BRL3kNNeSohtoR7AXHhXNpt_6w_NJu4mFX16U-zVMN_ADMyCXLreASH3nMWcM_WwqZ6rl7oq17FgPI8LlmeqkBdkwVNZZDxn8uOafL9Bi3r0aOg74O_kgQ5-RmbE3lHr-45W1YoG3Dt9CLTRAVo6J5ML0wD-iCd_AO0duj0dwXw6_Jog0CmcwFF77KdAWwyjdgZoBzrMI-GGXNm5EG7PuiT1U1WX62j7utqUj9sIFRujolHCtGkmJDd5kQJIYbVNZybSRvHGWCFYzpVSxljFkjQBqRppZJ5oJsHKJbn7r0UA2A0eO-1_ducr5B-vg1zr
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IEMENTECH.2017.8076983
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 153861703X
9781538617038
EndPage 5
ExternalDocumentID 8076983
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-8b92cd56231c785ee32faf52cd25b91bcf22071999ccf90454e39b3c374a03ef3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:36:59 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-8b92cd56231c785ee32faf52cd25b91bcf22071999ccf90454e39b3c374a03ef3
PageCount 5
ParticipantIDs ieee_primary_8076983
PublicationCentury 2000
PublicationDate 2017-April
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-April
PublicationDecade 2010
PublicationTitle 2017 1st International Conference on Electronics, Materials Engineering and Nano-Technology (IEMENTech)
PublicationTitleAbbrev IEMENTECH
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6391336
Snippet Epilepsy or recurrent seizures is one of the most common non communicable neurological disorder that is prevalent in today's world population are sudden...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Clustering algorithms
EEG
Electrodes
Electroencephalography
Epilepsy
Euclidean distance
k-means
Scalp
siezure
Unsupervised learning
Title Pediatric Seizure prediction from EEG signals based on unsupervised learning techniques using various distance measures
URI https://ieeexplore.ieee.org/document/8076983
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEN20PXlS0xq_swePQukusMu5oVaTGhNr0lvDfjWNkTYFNOmvd2dBjMaDN1hI2MwA82b3zRuEbpRThaPGIzTMvJDp0H5zjHhEmlhYmMSVKxebPcbTl_BhES066LathdFaO_KZ9uHQ7eWrjaxgqWzIbdKdcNpFXcbjularKfodBcnw3snfp-MpELaY39z8o2uKCxqTQzT7elzNFXn1q1L4cv9LifG_8zlCg-_yPPzUBp5j1NF5H320TTfws17vq53G2x3swoDlMVSR4DS9w8DXsG8chuilsL1S5UW1hR8GnDc9JFa4lXYtMDDjV_jd5tSbqsAK8CZM4K1eXCwGaD5J5-Op13RV8NZJUHpcJEQqQD0jyXikNSUmM5EdI5FIRkIaQizssLhRSpOAQJ-miaCSsjALqDb0BPXyTa5PEVZUZoYZap1BLS4IM57FAbfZtqFEEiHOUB9sttzWuhnLxlznfw9foAPwW82KuUS9clfpKxvwS3HtPP0JO_av1w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwGG3mPOhJzWb8bQ8ehbG2QDkvKNNtMXEmuy20tMtiZMsATfbX2w8Qo_HgDQoJTQt872vfex9CN0npCke1RSiLLeYrZr45n1hEak8YmMSTUi42nnjRC3uYubMWum20MEqpknymbDgs9_KTlSxgqazHTdIdcLqDdl3GmFuptWrZb98JesPSAD8cREDZ8u369h91U8qwcXeAxl8PrNgir3aRC1tuf3kx_rdHh6j7LdDDT03oOUItlXbQR1N2Az-r5bbYKLzewD4MjD0GHQkOw3sMjA3zzmGIXwk2V4o0K9bwy4DzuorEAjfmrhkGbvwCv5uselVkOAHECR14q5YXsy6a3oXTQWTVdRWsZeDkFhcBkQngnr70uasUJTrWrmkjrgj6QmpCDPAwyFFKHYBFn6KBoJL6LHao0vQYtdNVqk4QTqiMta-pzz1qkAGLeew53OTbmhJJhDhFHRiz-bpyzpjXw3X2d_M12oum49F8NJw8nqN9mMOKI3OB2vmmUJcm_Ofiqpz1T5i0syQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+1st+International+Conference+on+Electronics%2C+Materials+Engineering+and+Nano-Technology+%28IEMENTech%29&rft.atitle=Pediatric+Seizure+prediction+from+EEG+signals+based+on+unsupervised+learning+techniques+using+various+distance+measures&rft.au=Chakrabarti%2C+Satarupa&rft.au=Swetapadma%2C+Aleena&rft.au=Pattnaik%2C+Prasant+Kumar&rft.au=Samajdar%2C+Tina&rft.date=2017-04-01&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FIEMENTECH.2017.8076983&rft.externalDocID=8076983