Detecting and predicting of abnormal behavior using hierarchical Markov model in smart home network

In this paper, we present an application of the hierarchical hidden Markov model (HHMM) for the problem of predicting the state of human behavior in a smart home network. We argue that to robustly model and recognize sequential human activities, it is crucial to exploit both the natural hierarchical...

Full description

Saved in:
Bibliographic Details
Published in2010 IEEE 17Th International Conference on Industrial Engineering and Engineering Management pp. 410 - 414
Main Authors Wonjoon Kang, Dongkyoo Shin, Dongil Shin
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2010
Subjects
Online AccessGet full text
ISBN1424464838
9781424464838
DOI10.1109/ICIEEM.2010.5646583

Cover

Abstract In this paper, we present an application of the hierarchical hidden Markov model (HHMM) for the problem of predicting the state of human behavior in a smart home network. We argue that to robustly model and recognize sequential human activities, it is crucial to exploit both the natural hierarchical decomposition and shared semantics embedded in a ubiquitous environment. To this end, we propose the use of the HHMM, a rich stochastic model that has recently been extended to handle shared structures, for representing and recognizing a set of complex indoor activities. The main contributions of this paper lie in the application of the shared structure HHMM, the estimation of the state of a user's behavior, and the detection of abnormal behavior. The user behavior data from an experiment show that directly modeling shared structures improves the recognition efficiency and prediction accuracy for the state of a human's behavior when compared with a flat HMM.
AbstractList In this paper, we present an application of the hierarchical hidden Markov model (HHMM) for the problem of predicting the state of human behavior in a smart home network. We argue that to robustly model and recognize sequential human activities, it is crucial to exploit both the natural hierarchical decomposition and shared semantics embedded in a ubiquitous environment. To this end, we propose the use of the HHMM, a rich stochastic model that has recently been extended to handle shared structures, for representing and recognizing a set of complex indoor activities. The main contributions of this paper lie in the application of the shared structure HHMM, the estimation of the state of a user's behavior, and the detection of abnormal behavior. The user behavior data from an experiment show that directly modeling shared structures improves the recognition efficiency and prediction accuracy for the state of a human's behavior when compared with a flat HMM.
Author Wonjoon Kang
Dongkyoo Shin
Dongil Shin
Author_xml – sequence: 1
  surname: Wonjoon Kang
  fullname: Wonjoon Kang
  email: wonjoon@gce.sejong.ac.kr
  organization: Dept. of Comput. Eng. & Sci., Sejong Univ., Seoul, South Korea
– sequence: 2
  surname: Dongkyoo Shin
  fullname: Dongkyoo Shin
  email: shindk@sejong.ac.kr
  organization: Dept. of Comput. Eng. & Sci., Sejong Univ., Seoul, South Korea
– sequence: 3
  surname: Dongil Shin
  fullname: Dongil Shin
  email: dshin@sejong.ac.kr
  organization: Dept. of Comput. Eng. & Sci., Sejong Univ., Seoul, South Korea
BookMark eNpFkN1Kw0AQhVdU0NY-QW_2BVL3P8mlxFgDLd70wruym8yatclu2cSKb2-kBQeG4ZsDh8OZoRsfPCC0pGRFKckfq6Iqy-2KkekhlVAy41doRgUTQomMvV__A8_u0GIYPsk0kqWcyntUP8MI9ej8B9a-wccIjTtjsFgbH2KvO2yg1ScXIv4a_qTWQdSxbl09aVsdD-GE-9BAh53HQ6_jiNvQA_Ywfod4eEC3VncDLC53jnYv5a54TTZv66p42iQuJ2OSSSqNsjnLZGOtSS0HbVXDUyVqo1VudU5SMJRLW1vDc-CSkIYZwagy0_I5Wp5tHQDsj9FNQX72l074L8wBWZw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIEEM.2010.5646583
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 142446482X
9781424464845
9781424464821
1424464846
EndPage 414
ExternalDocumentID 5646583
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-8515b6f9285dffb7f3eaf6d3764cba69fa907eb135fcfb39e3500d2b4216b2163
IEDL.DBID RIE
ISBN 1424464838
9781424464838
IngestDate Wed Aug 27 02:51:59 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-8515b6f9285dffb7f3eaf6d3764cba69fa907eb135fcfb39e3500d2b4216b2163
PageCount 5
ParticipantIDs ieee_primary_5646583
PublicationCentury 2000
PublicationDate 2010-Oct.
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-Oct.
PublicationDecade 2010
PublicationTitle 2010 IEEE 17Th International Conference on Industrial Engineering and Engineering Management
PublicationTitleAbbrev ICIEEM
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000527315
Score 1.4998608
Snippet In this paper, we present an application of the hierarchical hidden Markov model (HHMM) for the problem of predicting the state of human behavior in a smart...
SourceID ieee
SourceType Publisher
StartPage 410
SubjectTerms Accuracy
detecting abnormal behavior
Hidden Markov Model
Hidden Markov models
Hierarchy Hidden Markov Model
smart home network
ubiquitous environment
Viterbi algorithm
Title Detecting and predicting of abnormal behavior using hierarchical Markov model in smart home network
URI https://ieeexplore.ieee.org/document/5646583
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkyAWsRbHhhJ68SPJnOhKkhFDEXqVvn8gAqaVCVl4NdjO0kRiIHBku0hsuzId-f7vu8QulJ2aCQ1ELngwkaMAo8gsSoiFFTiQ5JEB7XPBzF5YvdzPm-h6x0XxhgTwGem77shl68LtfVPZQMumDOYtI3aw1RUXK3dewrxSmIxb7hbgqU0bSSdmnGtOhSTbHA3csHUtIJ21Z_9UV8lmJfxPpo2C6tQJa_9bQl99flLs_G_Kz9AvW8iH37cmahD1DJ5F6kb4zMHbgLLXOP1xudqwrCwWELuvdg33PD3sUfGP2NfMjskHdyZYk_wKT5wqKKDlzl-X7kfEL8UK4PzClbeQ7Px7Ww0iepaC9EyI2Xk_C4OwmZJyrW1MLTUSCu0u32YAikyK10Q7a51yq2yQDNDOSE6AZbEAlyjR6iTF7k5RtjENvVlFpRzfZhRTEICOtaCgKSxpOkJ6vr9WawrNY1FvTWnf0-fob2Qrw_wuXPUKTdbc-HcgBIuw_l_AYdesH0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLeeGAkbRI_msyFqoW2YihSt8rnByBoUpWUgV-P7TRFIAYGS7aHyHIs353v-75D6EqajhZEQ2CDCxNQAiyA2MggJCBjF5LEyqt9jnn_kd5N2bSGrjdcGK21B5_pluv6XL7K5co9lbUZp9Zgki20zSilrGRrbV5UQqclFrGKvcVpQpJK1Kkar3WHojBtD7o2nBqV4K71h39UWPEGpreHRtXSSlzJa2tVQEt-_lJt_O_a91Hzm8qHHzZG6gDVdNZA8ka73IGdwCJTeLF02Ro_zA0WkDk_9g1XDH7ssPFP2BXN9mkH-1exo_jkH9jX0cEvGX6f2yOIn_O5xlkJLG-iSe920u0H62oLwUsaFoH1vBhwk8YJU8ZAxxAtDFf2_qESBE-NsGG0vdgJM9IASTVhYahioHHEwTZyiOpZnukjhHVkEldoQVrnh2pJBcSgIsVDECQSJDlGDbc_s0WppzFbb83J39OXaKc_GQ1nw8H4_hTt-uy9B9OdoXqxXOlz6xQUcOHPwhf2bLPK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+17Th+International+Conference+on+Industrial+Engineering+and+Engineering+Management&rft.atitle=Detecting+and+predicting+of+abnormal+behavior+using+hierarchical+Markov+model+in+smart+home+network&rft.au=Wonjoon+Kang&rft.au=Dongkyoo+Shin&rft.au=Dongil+Shin&rft.date=2010-10-01&rft.pub=IEEE&rft.isbn=9781424464838&rft.spage=410&rft.epage=414&rft_id=info:doi/10.1109%2FICIEEM.2010.5646583&rft.externalDocID=5646583
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424464838/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424464838/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424464838/sc.gif&client=summon&freeimage=true