A bacterial foraging global optimization algorithm based on the particle swarm optimization

In this paper, a new hybrid algorithm is introduced to improve the efficiency, accuracy and overcome the drawbacks of weak ability to perceive the environment and vulnerable to perception of local extreme in the optimization process of bacterial foraging optimization (BFO) algorithm. In the new algo...

Full description

Saved in:
Bibliographic Details
Published in2010 IEEE International Conference on Intelligent Computing and Intelligent Systems Vol. 2; pp. 22 - 27
Main Authors Liu XiaoLong, Li RongJun, Yang Ping
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2010
Subjects
Online AccessGet full text
ISBN9781424465828
1424465826
DOI10.1109/ICICISYS.2010.5658828

Cover

Abstract In this paper, a new hybrid algorithm is introduced to improve the efficiency, accuracy and overcome the drawbacks of weak ability to perceive the environment and vulnerable to perception of local extreme in the optimization process of bacterial foraging optimization (BFO) algorithm. In the new algorithm, the idea of particle swarm optimization (PSO) is merged into the chemotaxis of bacterial foraging optimization algorithms and elimination probability is proposed in elimination-dispersion according to the energy of bacteria. In order to compare the performance of this new hybrid algorithm with BFO and PSO, some typical high dimensional complex functions was proposed to test these three bionic algorithms. The results show that the new algorithm has a better searching speed an obvious improvement in accuracy. This algorithm is suitable to solve the complex functions optimization.
AbstractList In this paper, a new hybrid algorithm is introduced to improve the efficiency, accuracy and overcome the drawbacks of weak ability to perceive the environment and vulnerable to perception of local extreme in the optimization process of bacterial foraging optimization (BFO) algorithm. In the new algorithm, the idea of particle swarm optimization (PSO) is merged into the chemotaxis of bacterial foraging optimization algorithms and elimination probability is proposed in elimination-dispersion according to the energy of bacteria. In order to compare the performance of this new hybrid algorithm with BFO and PSO, some typical high dimensional complex functions was proposed to test these three bionic algorithms. The results show that the new algorithm has a better searching speed an obvious improvement in accuracy. This algorithm is suitable to solve the complex functions optimization.
Author Li RongJun
Liu XiaoLong
Yang Ping
Author_xml – sequence: 1
  surname: Liu XiaoLong
  fullname: Liu XiaoLong
  email: 810963@qq.com
  organization: Sch. of Bus. Adm., SCUT, Guangzhou, China
– sequence: 2
  surname: Li RongJun
  fullname: Li RongJun
  organization: Sch. of Bus. Adm., SCUT, Guangzhou, China
– sequence: 3
  surname: Yang Ping
  fullname: Yang Ping
  organization: Sch. of Bus. Adm., SCUT, Guangzhou, China
BookMark eNpVkFFLwzAQxyMq6GY_gQj5Ap1Jmqbp4yg6B4M9bC_Dh3Hprl2kbUoaEP30BpwP3j0cvz_3_3PcjNwMbkBCnjhbcM7K53UVe3fYLQSLUq5yrYW-IjMuhZSRpLgmSVnoPxb6jiTT9MFixe1cF_fkfUkN1AG9hY42zkNrh5a2nTOR3Rhsb78hWDdQ6FrnbTj30TDhiUYpnJGO4IOtO6TTJ_j-n-WB3DbQTZhc5pzsX1_21Vu62a7W1XKT2pKFtEBALWrMpGGIyHQ8VTQ1Y8qUQjVgSiOZPilgWDTagOKAhqtCCRQZB5XNyeNvrI324-htD_7reHlH9gNtN1h_
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICICISYS.2010.5658828
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1424465842
1424465850
9781424465842
9781424465859
EndPage 27
ExternalDocumentID 5658828
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-7eae82ce34b0eee084652fc006b926fab9b408d6a0e7f8ba61aeb16762e231a63
IEDL.DBID RIE
ISBN 9781424465828
1424465826
IngestDate Wed Aug 27 02:54:44 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-7eae82ce34b0eee084652fc006b926fab9b408d6a0e7f8ba61aeb16762e231a63
PageCount 6
ParticipantIDs ieee_primary_5658828
PublicationCentury 2000
PublicationDate 2010-Oct.
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-Oct.
PublicationDecade 2010
PublicationTitle 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems
PublicationTitleAbbrev ICICISYS
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000565587
Score 1.5078484
Snippet In this paper, a new hybrid algorithm is introduced to improve the efficiency, accuracy and overcome the drawbacks of weak ability to perceive the environment...
SourceID ieee
SourceType Publisher
StartPage 22
SubjectTerms Bacterial Foraging Optimization
Equations
Hybrid Optimization Algorithm
Microorganisms
Optimization
Particle Swarm Optimization
Title A bacterial foraging global optimization algorithm based on the particle swarm optimization
URI https://ieeexplore.ieee.org/document/5658828
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF3anjyptOI3e_Bo2nST3WyOUixVqAitUPFQZrMTLbZJqSmCv97JRysVD5JLsiRh2E1m3u7Oe8PYVUghIBKxdFBK5fjkhR2Ig8ixngAPIRAgcr7z8EENnvz7iZzU2PWWC4OIRfIZtvPTYi_fptE6XyrrEPggQKjrrB5oVXK1tuspFMil1MGGu0V3CrWRdKqudcXg6bph565Hx-h5VCZ3VS_eqbBSBJj-PhtuTCvzSt7b68y0o69fqo3_tf2AtX6ofPxxG6QOWQ2TJnu54aZUaYY5J9RaVCripTYIT8mJLCp2Jof5a7qaZW8Lnoc7y6mJECNfVh8c__iE1WLnkRYb92_HvYFTVVlwZqGbOQECahGh5xuXjHYJj0gRR_QzmlCoGExofFdbBS4GsTagukDuXZEPRYKGoLwj1kjSBI8Z93xtUFgRxECzTrQQeabrW2XRVfnIn7Bm3i_TZamjMa265PTv5jO2V-zUF4lz56yRrdZ4QQAgM5fFyH8DNVWvbQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRwujabjsaIkEFYgImGA-kXd-UCIzgiIl_vW8_wGA8mF22Zlteuu69r-37vkfIVYAhIOSRZCClYgK9MNORFzLrcu2C9rjmKd-521PtJ3E_lMMSuV5zYQAgSz6DWnqa7eXbOFymS2V1BB8ICP0tsi2FEDJna61XVDCUS-l7K_YW3svVStSpuPYLDk_DCep3TTz6z_08vat49UaNlSzEtPZId2VcnlnyXlsmphZ-_dJt_K_1-6T6Q-ajj-swdUBKMKuQlxtqcp1mPaGIW7NaRTRXB6ExupFpwc-kevIaL8bJ25SmAc9SbELMSOfFkKMfn3ox3XikSgat20GzzYo6C2wcOAnzQIPPQ3CFcdBoBxGJ5FGIv6MJuIq0CYxwfKu0A17kG60aGh28Qi8KCA61cg9JeRbP4IhQV_gGuOVepHHeCVaHrmkIqyw4Kv32x6SS9stonitpjIouOfm7-ZLstAfdzqhz13s4JbvZvn2WRndGysliCecIBxJzkY2Cb5Xvsro
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+International+Conference+on+Intelligent+Computing+and+Intelligent+Systems&rft.atitle=A+bacterial+foraging+global+optimization+algorithm+based+on+the+particle+swarm+optimization&rft.au=Liu+XiaoLong&rft.au=Li+RongJun&rft.au=Yang+Ping&rft.date=2010-10-01&rft.pub=IEEE&rft.isbn=9781424465828&rft.volume=2&rft.spage=22&rft.epage=27&rft_id=info:doi/10.1109%2FICICISYS.2010.5658828&rft.externalDocID=5658828
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465828/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465828/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465828/sc.gif&client=summon&freeimage=true