A bacterial foraging global optimization algorithm based on the particle swarm optimization
In this paper, a new hybrid algorithm is introduced to improve the efficiency, accuracy and overcome the drawbacks of weak ability to perceive the environment and vulnerable to perception of local extreme in the optimization process of bacterial foraging optimization (BFO) algorithm. In the new algo...
Saved in:
| Published in | 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems Vol. 2; pp. 22 - 27 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.10.2010
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 9781424465828 1424465826 |
| DOI | 10.1109/ICICISYS.2010.5658828 |
Cover
| Abstract | In this paper, a new hybrid algorithm is introduced to improve the efficiency, accuracy and overcome the drawbacks of weak ability to perceive the environment and vulnerable to perception of local extreme in the optimization process of bacterial foraging optimization (BFO) algorithm. In the new algorithm, the idea of particle swarm optimization (PSO) is merged into the chemotaxis of bacterial foraging optimization algorithms and elimination probability is proposed in elimination-dispersion according to the energy of bacteria. In order to compare the performance of this new hybrid algorithm with BFO and PSO, some typical high dimensional complex functions was proposed to test these three bionic algorithms. The results show that the new algorithm has a better searching speed an obvious improvement in accuracy. This algorithm is suitable to solve the complex functions optimization. |
|---|---|
| AbstractList | In this paper, a new hybrid algorithm is introduced to improve the efficiency, accuracy and overcome the drawbacks of weak ability to perceive the environment and vulnerable to perception of local extreme in the optimization process of bacterial foraging optimization (BFO) algorithm. In the new algorithm, the idea of particle swarm optimization (PSO) is merged into the chemotaxis of bacterial foraging optimization algorithms and elimination probability is proposed in elimination-dispersion according to the energy of bacteria. In order to compare the performance of this new hybrid algorithm with BFO and PSO, some typical high dimensional complex functions was proposed to test these three bionic algorithms. The results show that the new algorithm has a better searching speed an obvious improvement in accuracy. This algorithm is suitable to solve the complex functions optimization. |
| Author | Li RongJun Liu XiaoLong Yang Ping |
| Author_xml | – sequence: 1 surname: Liu XiaoLong fullname: Liu XiaoLong email: 810963@qq.com organization: Sch. of Bus. Adm., SCUT, Guangzhou, China – sequence: 2 surname: Li RongJun fullname: Li RongJun organization: Sch. of Bus. Adm., SCUT, Guangzhou, China – sequence: 3 surname: Yang Ping fullname: Yang Ping organization: Sch. of Bus. Adm., SCUT, Guangzhou, China |
| BookMark | eNpVkFFLwzAQxyMq6GY_gQj5Ap1Jmqbp4yg6B4M9bC_Dh3Hprl2kbUoaEP30BpwP3j0cvz_3_3PcjNwMbkBCnjhbcM7K53UVe3fYLQSLUq5yrYW-IjMuhZSRpLgmSVnoPxb6jiTT9MFixe1cF_fkfUkN1AG9hY42zkNrh5a2nTOR3Rhsb78hWDdQ6FrnbTj30TDhiUYpnJGO4IOtO6TTJ_j-n-WB3DbQTZhc5pzsX1_21Vu62a7W1XKT2pKFtEBALWrMpGGIyHQ8VTQ1Y8qUQjVgSiOZPilgWDTagOKAhqtCCRQZB5XNyeNvrI324-htD_7reHlH9gNtN1h_ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICICISYS.2010.5658828 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1424465842 1424465850 9781424465842 9781424465859 |
| EndPage | 27 |
| ExternalDocumentID | 5658828 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-i90t-7eae82ce34b0eee084652fc006b926fab9b408d6a0e7f8ba61aeb16762e231a63 |
| IEDL.DBID | RIE |
| ISBN | 9781424465828 1424465826 |
| IngestDate | Wed Aug 27 02:54:44 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-7eae82ce34b0eee084652fc006b926fab9b408d6a0e7f8ba61aeb16762e231a63 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_5658828 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-Oct. |
| PublicationDateYYYYMMDD | 2010-10-01 |
| PublicationDate_xml | – month: 10 year: 2010 text: 2010-Oct. |
| PublicationDecade | 2010 |
| PublicationTitle | 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems |
| PublicationTitleAbbrev | ICICISYS |
| PublicationYear | 2010 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000565587 |
| Score | 1.5078484 |
| Snippet | In this paper, a new hybrid algorithm is introduced to improve the efficiency, accuracy and overcome the drawbacks of weak ability to perceive the environment... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 22 |
| SubjectTerms | Bacterial Foraging Optimization Equations Hybrid Optimization Algorithm Microorganisms Optimization Particle Swarm Optimization |
| Title | A bacterial foraging global optimization algorithm based on the particle swarm optimization |
| URI | https://ieeexplore.ieee.org/document/5658828 |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF3anjyptOI3e_Bo2nST3WyOUixVqAitUPFQZrMTLbZJqSmCv97JRysVD5JLsiRh2E1m3u7Oe8PYVUghIBKxdFBK5fjkhR2Ig8ixngAPIRAgcr7z8EENnvz7iZzU2PWWC4OIRfIZtvPTYi_fptE6XyrrEPggQKjrrB5oVXK1tuspFMil1MGGu0V3CrWRdKqudcXg6bph565Hx-h5VCZ3VS_eqbBSBJj-PhtuTCvzSt7b68y0o69fqo3_tf2AtX6ofPxxG6QOWQ2TJnu54aZUaYY5J9RaVCripTYIT8mJLCp2Jof5a7qaZW8Lnoc7y6mJECNfVh8c__iE1WLnkRYb92_HvYFTVVlwZqGbOQECahGh5xuXjHYJj0gRR_QzmlCoGExofFdbBS4GsTagukDuXZEPRYKGoLwj1kjSBI8Z93xtUFgRxECzTrQQeabrW2XRVfnIn7Bm3i_TZamjMa265PTv5jO2V-zUF4lz56yRrdZ4QQAgM5fFyH8DNVWvbQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRwujabjsaIkEFYgImGA-kXd-UCIzgiIl_vW8_wGA8mF22Zlteuu69r-37vkfIVYAhIOSRZCClYgK9MNORFzLrcu2C9rjmKd-521PtJ3E_lMMSuV5zYQAgSz6DWnqa7eXbOFymS2V1BB8ICP0tsi2FEDJna61XVDCUS-l7K_YW3svVStSpuPYLDk_DCep3TTz6z_08vat49UaNlSzEtPZId2VcnlnyXlsmphZ-_dJt_K_1-6T6Q-ajj-swdUBKMKuQlxtqcp1mPaGIW7NaRTRXB6ExupFpwc-kevIaL8bJ25SmAc9SbELMSOfFkKMfn3ox3XikSgat20GzzYo6C2wcOAnzQIPPQ3CFcdBoBxGJ5FGIv6MJuIq0CYxwfKu0A17kG60aGh28Qi8KCA61cg9JeRbP4IhQV_gGuOVepHHeCVaHrmkIqyw4Kv32x6SS9stonitpjIouOfm7-ZLstAfdzqhz13s4JbvZvn2WRndGysliCecIBxJzkY2Cb5Xvsro |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+International+Conference+on+Intelligent+Computing+and+Intelligent+Systems&rft.atitle=A+bacterial+foraging+global+optimization+algorithm+based+on+the+particle+swarm+optimization&rft.au=Liu+XiaoLong&rft.au=Li+RongJun&rft.au=Yang+Ping&rft.date=2010-10-01&rft.pub=IEEE&rft.isbn=9781424465828&rft.volume=2&rft.spage=22&rft.epage=27&rft_id=info:doi/10.1109%2FICICISYS.2010.5658828&rft.externalDocID=5658828 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465828/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465828/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465828/sc.gif&client=summon&freeimage=true |