Pruning convolution neural network (squeezenet) using taylor expansion-based criterion
Recent research in the field of deep learning focuses on reducing the model size of the Convolution Neural Network (CNN) by various compression techniques like Pruning, Quantization and Encoding (eg. Huffman encoding). This paper proposes a way to prune the CNN based on Taylor expansion of change in...
Saved in:
| Published in | 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) pp. 1 - 5 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.12.2018
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/ISSPIT.2018.8705095 |
Cover
| Abstract | Recent research in the field of deep learning focuses on reducing the model size of the Convolution Neural Network (CNN) by various compression techniques like Pruning, Quantization and Encoding (eg. Huffman encoding). This paper proposes a way to prune the CNN based on Taylor expansion of change in cost function ΔC of the model. The proposed algorithm uses greedy criteria based pruning with fine-tuning by backpropagation on SqueezeNet architecture. Transfer learning technique is used to train the SqueezeNet on the CIFAR-10 dataset. The proposed algorithm achieves 70% model reduction on SqueezeNet architecture with only 1% drop in accuracy. |
|---|---|
| AbstractList | Recent research in the field of deep learning focuses on reducing the model size of the Convolution Neural Network (CNN) by various compression techniques like Pruning, Quantization and Encoding (eg. Huffman encoding). This paper proposes a way to prune the CNN based on Taylor expansion of change in cost function ΔC of the model. The proposed algorithm uses greedy criteria based pruning with fine-tuning by backpropagation on SqueezeNet architecture. Transfer learning technique is used to train the SqueezeNet on the CIFAR-10 dataset. The proposed algorithm achieves 70% model reduction on SqueezeNet architecture with only 1% drop in accuracy. |
| Author | Gaikwad, Akash Sunil El-Sharkawy, Mohamed |
| Author_xml | – sequence: 1 givenname: Akash Sunil surname: Gaikwad fullname: Gaikwad, Akash Sunil organization: IoT Collaboratory IUPUI, Department of Electrical and Computer Engineering Purdue School of Engineering and Technology, Indianapolis – sequence: 2 givenname: Mohamed surname: El-Sharkawy fullname: El-Sharkawy, Mohamed organization: IoT Collaboratory IUPUI, Department of Electrical and Computer Engineering Purdue School of Engineering and Technology, Indianapolis |
| BookMark | eNotj0FLwzAYhiPoQed-wS456qE1adakOcpQVxg4WPE6vqRfJFiTmbbq_PVW3Onhgfd94b0i5yEGJGTBWc4503f1bretm7xgvMorxUqmyzMy16ripaikKmWlLsnLNo3Bh1dqY_iM3Tj4GGjAMUE3YfiK6Y3e9B8j4g9OfkvH_i89wLGLieL3AUI_VTIDPbbUJj9gmvyaXDjoepyfOCPN40OzWmeb56d6db_JvGZDpqw2pZJaQgtu6QrDmGO8aLWThS2sK1pgVYnWaDTGWSsYKFxyCSAEOKvEjCz-Zz0i7g_Jv0M67k9nxS8_elIP |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ISSPIT.2018.8705095 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781538675687 1538675684 |
| EndPage | 5 |
| ExternalDocumentID | 8705095 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i90t-7c9b57696adaf4f2b00f012d9f62c2cf2da085ecb9ebbfcc30a7e416aa33afc73 |
| IEDL.DBID | RIE |
| IngestDate | Wed May 01 11:50:21 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-7c9b57696adaf4f2b00f012d9f62c2cf2da085ecb9ebbfcc30a7e416aa33afc73 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_8705095 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Dec. |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) |
| PublicationTitleAbbrev | ISSPIT |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8085393 |
| Snippet | Recent research in the field of deep learning focuses on reducing the model size of the Convolution Neural Network (CNN) by various compression techniques like... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | CIFAR-10 CNN Coarse pruning Computer architecture Convolution Convolution neural network Cost function Fires Neural networks Pruning S32V234 Signal processing algorithms SqueezeNet Taylor expansion Taylor series Transfer learning. Fine Pruning |
| Title | Pruning convolution neural network (squeezenet) using taylor expansion-based criterion |
| URI | https://ieeexplore.ieee.org/document/8705095 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB3anjyptOI3e_CgYNJ0kybZs1haoRJold7Kfo2IkpaaXPrrnU1iRfHgKSEk2bBfb97mzVuAK4Oao0JDA4noahRi4CmkQM6KWMeEgAqlS06ePsbjp-hhMVy04HaXC2OtrcRn1nen1b98s9KlWyrrU98ifBu2oZ2kcZ2r1RgJDQLRn8xm2WTu1Fqp39z5Y8uUCjFG-zD9KqsWirz5ZaF8vf1lw_jfjzmA3nduHst2qHMILZt34TnblG6BgzkRedOZmLOqlO90qITe7PrDkdYtzW3FDXNy9xdWVHSdUekEWPSI5zDNMJpInIPzKu_BfHQ_vxt7zY4J3qsICi_RQhF_ELE0EiPkNKSQAMgIjLnmGrmRFGFZrYRVCrUOA5lYisikDEOJOgmPoJOvcnsMLI0iehtRVcVtZAWFecFAcsG5THVItPYEuq5KluvaE2PZ1Mbp35fPYM81Sy0DOYdOsSntBYF5oS6rVvwERIWk0A |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFL1BXOhKDRjfzsKFJraU6bQwayMBBUJCNezIPA3RFIPthq_3TlsxGheu2jRtp5nXuWd67hmAK20VtdJqHEhIV1loA09aDOQMj1WMCCitcMnJo3Hcf2IPs2hWg9tNLowxphCfGd-dFv_y9VLlbqmshX0L8S3agu2IMRaV2VqVlVA74K3BdDoZJE6v1fWre39smlJgRm8PRl-llVKRVz_PpK_Wv4wY__s5-9D8zs4jkw3uHEDNpA14nqxyt8RBnIy86k7EmVWKNzwUUm9y_eFo6xpnt-yGOMH7C8kKwk6wdIQsfMRzqKYJTiXOw3mZNiHp3Sd3fa_aM8Fb8CDzOopLZBA8FlpYZikOKosQpLmNqaLKUi0wxjJKciOlVSoMRMdgTCZEGAqrOuEh1NNlao6AdBnDtyFZldQwwzHQC9qCckpFV4VIbI-h4apk_l66Ysyr2jj5-_Il7PST0XA-HIwfT2HXNVEpCjmDerbKzTlCeyYvihb9BBGDqB0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+International+Symposium+on+Signal+Processing+and+Information+Technology+%28ISSPIT%29&rft.atitle=Pruning+convolution+neural+network+%28squeezenet%29+using+taylor+expansion-based+criterion&rft.au=Gaikwad%2C+Akash+Sunil&rft.au=El-Sharkawy%2C+Mohamed&rft.date=2018-12-01&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FISSPIT.2018.8705095&rft.externalDocID=8705095 |