Pruning convolution neural network (squeezenet) using taylor expansion-based criterion

Recent research in the field of deep learning focuses on reducing the model size of the Convolution Neural Network (CNN) by various compression techniques like Pruning, Quantization and Encoding (eg. Huffman encoding). This paper proposes a way to prune the CNN based on Taylor expansion of change in...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) pp. 1 - 5
Main Authors Gaikwad, Akash Sunil, El-Sharkawy, Mohamed
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2018
Subjects
Online AccessGet full text
DOI10.1109/ISSPIT.2018.8705095

Cover

Abstract Recent research in the field of deep learning focuses on reducing the model size of the Convolution Neural Network (CNN) by various compression techniques like Pruning, Quantization and Encoding (eg. Huffman encoding). This paper proposes a way to prune the CNN based on Taylor expansion of change in cost function ΔC of the model. The proposed algorithm uses greedy criteria based pruning with fine-tuning by backpropagation on SqueezeNet architecture. Transfer learning technique is used to train the SqueezeNet on the CIFAR-10 dataset. The proposed algorithm achieves 70% model reduction on SqueezeNet architecture with only 1% drop in accuracy.
AbstractList Recent research in the field of deep learning focuses on reducing the model size of the Convolution Neural Network (CNN) by various compression techniques like Pruning, Quantization and Encoding (eg. Huffman encoding). This paper proposes a way to prune the CNN based on Taylor expansion of change in cost function ΔC of the model. The proposed algorithm uses greedy criteria based pruning with fine-tuning by backpropagation on SqueezeNet architecture. Transfer learning technique is used to train the SqueezeNet on the CIFAR-10 dataset. The proposed algorithm achieves 70% model reduction on SqueezeNet architecture with only 1% drop in accuracy.
Author Gaikwad, Akash Sunil
El-Sharkawy, Mohamed
Author_xml – sequence: 1
  givenname: Akash Sunil
  surname: Gaikwad
  fullname: Gaikwad, Akash Sunil
  organization: IoT Collaboratory IUPUI, Department of Electrical and Computer Engineering Purdue School of Engineering and Technology, Indianapolis
– sequence: 2
  givenname: Mohamed
  surname: El-Sharkawy
  fullname: El-Sharkawy, Mohamed
  organization: IoT Collaboratory IUPUI, Department of Electrical and Computer Engineering Purdue School of Engineering and Technology, Indianapolis
BookMark eNotj0FLwzAYhiPoQed-wS456qE1adakOcpQVxg4WPE6vqRfJFiTmbbq_PVW3Onhgfd94b0i5yEGJGTBWc4503f1bretm7xgvMorxUqmyzMy16ripaikKmWlLsnLNo3Bh1dqY_iM3Tj4GGjAMUE3YfiK6Y3e9B8j4g9OfkvH_i89wLGLieL3AUI_VTIDPbbUJj9gmvyaXDjoepyfOCPN40OzWmeb56d6db_JvGZDpqw2pZJaQgtu6QrDmGO8aLWThS2sK1pgVYnWaDTGWSsYKFxyCSAEOKvEjCz-Zz0i7g_Jv0M67k9nxS8_elIP
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISSPIT.2018.8705095
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781538675687
1538675684
EndPage 5
ExternalDocumentID 8705095
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-7c9b57696adaf4f2b00f012d9f62c2cf2da085ecb9ebbfcc30a7e416aa33afc73
IEDL.DBID RIE
IngestDate Wed May 01 11:50:21 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-7c9b57696adaf4f2b00f012d9f62c2cf2da085ecb9ebbfcc30a7e416aa33afc73
PageCount 5
ParticipantIDs ieee_primary_8705095
PublicationCentury 2000
PublicationDate 2018-Dec.
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-Dec.
PublicationDecade 2010
PublicationTitle 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)
PublicationTitleAbbrev ISSPIT
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8085393
Snippet Recent research in the field of deep learning focuses on reducing the model size of the Convolution Neural Network (CNN) by various compression techniques like...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms CIFAR-10
CNN
Coarse pruning
Computer architecture
Convolution
Convolution neural network
Cost function
Fires
Neural networks
Pruning
S32V234
Signal processing algorithms
SqueezeNet
Taylor expansion
Taylor series
Transfer learning. Fine Pruning
Title Pruning convolution neural network (squeezenet) using taylor expansion-based criterion
URI https://ieeexplore.ieee.org/document/8705095
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB3anjyptOI3e_CgYNJ0kybZs1haoRJold7Kfo2IkpaaXPrrnU1iRfHgKSEk2bBfb97mzVuAK4Oao0JDA4noahRi4CmkQM6KWMeEgAqlS06ePsbjp-hhMVy04HaXC2OtrcRn1nen1b98s9KlWyrrU98ifBu2oZ2kcZ2r1RgJDQLRn8xm2WTu1Fqp39z5Y8uUCjFG-zD9KqsWirz5ZaF8vf1lw_jfjzmA3nduHst2qHMILZt34TnblG6BgzkRedOZmLOqlO90qITe7PrDkdYtzW3FDXNy9xdWVHSdUekEWPSI5zDNMJpInIPzKu_BfHQ_vxt7zY4J3qsICi_RQhF_ELE0EiPkNKSQAMgIjLnmGrmRFGFZrYRVCrUOA5lYisikDEOJOgmPoJOvcnsMLI0iehtRVcVtZAWFecFAcsG5THVItPYEuq5KluvaE2PZ1Mbp35fPYM81Sy0DOYdOsSntBYF5oS6rVvwERIWk0A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTsJAFL1BXOhKDRjfzsKFJraU6bQwayMBBUJCNezIPA3RFIPthq_3TlsxGheu2jRtp5nXuWd67hmAK20VtdJqHEhIV1loA09aDOQMj1WMCCitcMnJo3Hcf2IPs2hWg9tNLowxphCfGd-dFv_y9VLlbqmshX0L8S3agu2IMRaV2VqVlVA74K3BdDoZJE6v1fWre39smlJgRm8PRl-llVKRVz_PpK_Wv4wY__s5-9D8zs4jkw3uHEDNpA14nqxyt8RBnIy86k7EmVWKNzwUUm9y_eFo6xpnt-yGOMH7C8kKwk6wdIQsfMRzqKYJTiXOw3mZNiHp3Sd3fa_aM8Fb8CDzOopLZBA8FlpYZikOKosQpLmNqaLKUi0wxjJKciOlVSoMRMdgTCZEGAqrOuEh1NNlao6AdBnDtyFZldQwwzHQC9qCckpFV4VIbI-h4apk_l66Ysyr2jj5-_Il7PST0XA-HIwfT2HXNVEpCjmDerbKzTlCeyYvihb9BBGDqB0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+International+Symposium+on+Signal+Processing+and+Information+Technology+%28ISSPIT%29&rft.atitle=Pruning+convolution+neural+network+%28squeezenet%29+using+taylor+expansion-based+criterion&rft.au=Gaikwad%2C+Akash+Sunil&rft.au=El-Sharkawy%2C+Mohamed&rft.date=2018-12-01&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FISSPIT.2018.8705095&rft.externalDocID=8705095