Automatic Prediction of Epileptic Seizure Using Kernel Fisher Discriminant Classifiers

Accurate classification of seizure and non-seizure EEG signals is an important step in epileptic seizure prediction. In this paper, a seizure prediction algorithm based on kernel Fisher discriminant (KFD) classifiers is proposed. In this algorithm, spectral features are extracted by wavelet transfor...

Full description

Saved in:
Bibliographic Details
Published in2011 International Conference on Intelligent Computation and Bio-Medical Instrumentation pp. 200 - 203
Main Authors Nasehi, S., Pourghassem, H.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2011
Subjects
Online AccessGet full text
ISBN9781457711527
1457711524
DOI10.1109/ICBMI.2011.7

Cover

Abstract Accurate classification of seizure and non-seizure EEG signals is an important step in epileptic seizure prediction. In this paper, a seizure prediction algorithm based on kernel Fisher discriminant (KFD) classifiers is proposed. In this algorithm, spectral features are extracted by wavelet transform from seizure and non-seizure EEG signals. Then an efficient leave-one-out cross-validation of KFD classifier is used to classify the extracted features from EEG signals. This classifier have a low computational complexity that being significantly faster than conventional k-fold cross-validation procedures and being an attractive means of model selection in large-scale applications. The performance of algorithm is evaluated based on four measures, accuracy, false detection rate (FDR), good detection rate (GDR) and delay. The results illustrate that the algorithm can recognize 81 seizures of all 87 seizures with average delay of 3.7 second.
AbstractList Accurate classification of seizure and non-seizure EEG signals is an important step in epileptic seizure prediction. In this paper, a seizure prediction algorithm based on kernel Fisher discriminant (KFD) classifiers is proposed. In this algorithm, spectral features are extracted by wavelet transform from seizure and non-seizure EEG signals. Then an efficient leave-one-out cross-validation of KFD classifier is used to classify the extracted features from EEG signals. This classifier have a low computational complexity that being significantly faster than conventional k-fold cross-validation procedures and being an attractive means of model selection in large-scale applications. The performance of algorithm is evaluated based on four measures, accuracy, false detection rate (FDR), good detection rate (GDR) and delay. The results illustrate that the algorithm can recognize 81 seizures of all 87 seizures with average delay of 3.7 second.
Author Pourghassem, H.
Nasehi, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Nasehi
  fullname: Nasehi, S.
  organization: Dept. of Electr. Eng., Islamic Azad Univ., Isfahan, Iran
– sequence: 2
  givenname: H.
  surname: Pourghassem
  fullname: Pourghassem, H.
  email: h_pourghasem@iaun.ac.ir
  organization: Dept. of Electr. Eng., Islamic Azad Univ., Isfahan, Iran
BookMark eNpVTj1PwzAUNAIkoHRjY_EfaPCzGzseS2ihoggkCmvlOC_wUOpUdjrArycIFm65D51Od8aOQheQsQsQGYCwV8vy-mGZSQGQmQM2tqaAaW4MQA7i8J-X5oSNU_oQA7S2RphT9jrb993W9eT5U8SafE9d4F3D5ztqcfeTPyN97SPyl0Thjd9jDNjyBaV3jPyGko-0peBCz8vWpUQNYUzn7LhxbcLxH4_YejFfl3eT1ePtspytJmRFPzHSa5kjWK-rykhrGvCDFJVS0oscKzek0tS-AIEmn6paWje0HRaV9oVSI3b5O0uIuNkNT1z83GhQYKZafQMT2lQJ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICBMI.2011.7
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781457711510
0769546234
9780769546230
1457711516
EndPage 203
ExternalDocumentID 6131746
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-72c625e19c6bb7297f1cc6b0b332c05ebab7227dc810e7543d29a19cae8b6c833
IEDL.DBID RIE
ISBN 9781457711527
1457711524
IngestDate Wed Aug 27 04:12:36 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-72c625e19c6bb7297f1cc6b0b332c05ebab7227dc810e7543d29a19cae8b6c833
PageCount 4
ParticipantIDs ieee_primary_6131746
PublicationCentury 2000
PublicationDate 2011-Dec.
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-Dec.
PublicationDecade 2010
PublicationTitle 2011 International Conference on Intelligent Computation and Bio-Medical Instrumentation
PublicationTitleAbbrev icbmi
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669707
ssib026766923
Score 1.5212425
Snippet Accurate classification of seizure and non-seizure EEG signals is an important step in epileptic seizure prediction. In this paper, a seizure prediction...
SourceID ieee
SourceType Publisher
StartPage 200
SubjectTerms Classification algorithms
EEG
Electroencephalography
epilepsy
Feature extraction
Kernel
kernel Fisher discriminant classifier
Prediction algorithms
seizure prediction
wavelet transform
Wavelet transforms
Title Automatic Prediction of Epileptic Seizure Using Kernel Fisher Discriminant Classifiers
URI https://ieeexplore.ieee.org/document/6131746
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkyAWsS3PDCSNokTOxmhtGpBRUgU1K2ynYsUgZKoSpb-es5OUwRiYLvYGRI7uXvne3dHyA06VWGYcO0A_k5OkHrgxBolj3lMcpnGqY3gL5757C14XIWrDrnd58IAgCWfwdCINpafFLo2R2UjND0IoHmXdEXEm1yt9tvxueC8dQUaLcxj4QqbyxUKgcDHD9oST7trsSfCx6P5-H4xbyp6_my0Yu3M9JAs2ids6CUfw7pSQ739Vbzxv69wRAbfGX30ZW-rjkkH8j55v6urwpZsxTkTsDGbRIuUTkrUFaUZf4VsW2-AWmYBfYJNDp-0aZdOHzKjchoqDbXNNbPUNNYekOV0shzPnF2fBSeL3coRvkYnCLxYc6UQa4vU0yi6ijFfuyEoiaO-SHTkuSDCgCV-LPFuCZHiOmLshPTyIodTQqUQClxEXExo9Ps0Yh0hFWIsN-UyYP4Z6ZslWZdNJY31bjXO_x6-IAf2BNeSRy5Jr9rUcIUQoFLXdu-_AIaRq9E
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAC1CK-8cBI2iRO7GaE0qqlTYVEQd0q27lIESipqmTpr-fiNEUgBraLkyGxnbt3vnd3hNyhU-X7EdcW4O9kebEDVqBRcpjDJJdxEJsIfjjjozfveeEvGuR-lwsDAIZ8Bp1SNLH8KNNFeVTWRdODAJrvkX3f8zy_ytaqd4_LBee1M1DpYR4IW5hsLl8IhD6uVxd52l6LHRU-6I77j-G4qun5s9WKsTTDIxLW71gRTD46Ra46evOrfON_P-KYtL9z-ujLzlqdkAakLfL-UOSZKdqK98qQTblMNIvpYIXaYlWOv0KyKdZADbeATmCdwietGqbTp6RUOhWZhpr2mklcttZuk_lwMO-PrG2nBSsJ7NwSrkY3CJxAc6UQbYvY0SjaijFX2z4oiaOuiHTPsUH4HovcQOLTEnqK6x5jp6SZZimcESqFUGAj5mJCo-enEe0IqRBl2TGXHnPPSauckuWqqqWx3M7Gxd_Dt-RgNA-ny-l4Nrkkh-Y811BJrkgzXxdwjYAgVzdmH3wBupevHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+International+Conference+on+Intelligent+Computation+and+Bio-Medical+Instrumentation&rft.atitle=Automatic+Prediction+of+Epileptic+Seizure+Using+Kernel+Fisher+Discriminant+Classifiers&rft.au=Nasehi%2C+S.&rft.au=Pourghassem%2C+H.&rft.date=2011-12-01&rft.pub=IEEE&rft.isbn=9781457711527&rft.spage=200&rft.epage=203&rft_id=info:doi/10.1109%2FICBMI.2011.7&rft.externalDocID=6131746
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457711527/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457711527/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457711527/sc.gif&client=summon&freeimage=true