Automatic heart and lung sounds classification using convolutional neural networks
We study the effectiveness of using convolutional neural networks (CNNs) to automatically detect abnormal heart and lung sounds and classify them into different classes in this paper. Heart and respiratory diseases have been affecting humankind for a long time. An effective and automatic diagnostic...
        Saved in:
      
    
          | Published in | 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA) pp. 1 - 4 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            Asia Pacific Signal and Information Processing Association
    
        01.12.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.1109/APSIPA.2016.7820741 | 
Cover
| Abstract | We study the effectiveness of using convolutional neural networks (CNNs) to automatically detect abnormal heart and lung sounds and classify them into different classes in this paper. Heart and respiratory diseases have been affecting humankind for a long time. An effective and automatic diagnostic method is highly attractive since it can help discover potential threat at the early stage, even at home without a professional doctor. We collected a data set containing normal and abnormal heart and lung sounds. These sounds were then annotated by professional doctors. CNNs based systems were implemented to automatically classify the heart sounds into one of the seven categories: normal, bruit de galop, mitral inadequacy, mitral stenosis, interventricular septal defect (IVSD), aortic incompetence, aorta stenosis, and the lung sounds into one of the three categories: normal, moist rales, wheezing rale. | 
    
|---|---|
| AbstractList | We study the effectiveness of using convolutional neural networks (CNNs) to automatically detect abnormal heart and lung sounds and classify them into different classes in this paper. Heart and respiratory diseases have been affecting humankind for a long time. An effective and automatic diagnostic method is highly attractive since it can help discover potential threat at the early stage, even at home without a professional doctor. We collected a data set containing normal and abnormal heart and lung sounds. These sounds were then annotated by professional doctors. CNNs based systems were implemented to automatically classify the heart sounds into one of the seven categories: normal, bruit de galop, mitral inadequacy, mitral stenosis, interventricular septal defect (IVSD), aortic incompetence, aorta stenosis, and the lung sounds into one of the three categories: normal, moist rales, wheezing rale. | 
    
| Author | Wenkang Lei Qiyu Chen Xiang Tian Weibin Zhang Xiaoxue Zhang Shaoqiong Chen  | 
    
| Author_xml | – sequence: 1 surname: Qiyu Chen fullname: Qiyu Chen email: chenqiyuscut@qq.com organization: South China Univ. of Technol., Guangzhou, China – sequence: 2 surname: Weibin Zhang fullname: Weibin Zhang email: eeweibin@scut.edu.cn organization: South China Univ. of Technol., Guangzhou, China – sequence: 3 surname: Xiang Tian fullname: Xiang Tian email: xtian@scut.edu.cn organization: South China Univ. of Technol., Guangzhou, China – sequence: 4 surname: Xiaoxue Zhang fullname: Xiaoxue Zhang email: 46683357@qq.com organization: Guangdong No. 2 Provincial People's Hosp., Guangzhou, China – sequence: 5 surname: Shaoqiong Chen fullname: Shaoqiong Chen email: 137741110@qq.com organization: South China Univ. of Technol., Guangzhou, China – sequence: 6 surname: Wenkang Lei fullname: Wenkang Lei email: lei.wenkang@mail.scut.edu.cn organization: South China Univ. of Technol., Guangzhou, China  | 
    
| BookMark | eNotj8tKAzEYhSPYha19gm7yAjPmNklmORQvhYJFuy-Z5I8Gp4lMJopvb7VdfXDOx4EzR9cxRUBoRUlNKWnvut3rZtfVjFBZK82IEvQKzVutqVBSM32DXroypaOZgsXvYMYJm-jwUOIbzqlEl7EdTM7BB3tyUsQlh1NnU_xKQ_lLzIAjlPEf03caP_ItmnkzZFheuED7h_v9-qnaPj9u1t22Ci2ZKsU4aYR1zHrpuRBEUmcVUNowL7RijnKhlCfWOgd930jeW-KU6BkHaCTwBVqdZwMAHD7HcDTjz-Hykv8ChuVOcw | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/APSIPA.2016.7820741 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 9881476828 9789881476821  | 
    
| EndPage | 4 | 
    
| ExternalDocumentID | 7820741 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IL CBEJK RIE RIL  | 
    
| ID | FETCH-LOGICAL-i90t-723054cd2cf6f344061dc7e1152f4872d13477f0ccddebb563bc0d74b23ee56e3 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Thu Jun 29 18:38:22 EDT 2023 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i90t-723054cd2cf6f344061dc7e1152f4872d13477f0ccddebb563bc0d74b23ee56e3 | 
    
| PageCount | 4 | 
    
| ParticipantIDs | ieee_primary_7820741 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-Dec. | 
    
| PublicationDateYYYYMMDD | 2016-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2016 text: 2016-Dec.  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA) | 
    
| PublicationTitleAbbrev | APSIPA | 
    
| PublicationYear | 2016 | 
    
| Publisher | Asia Pacific Signal and Information Processing Association | 
    
| Publisher_xml | – name: Asia Pacific Signal and Information Processing Association | 
    
| Score | 1.7164171 | 
    
| Snippet | We study the effectiveness of using convolutional neural networks (CNNs) to automatically detect abnormal heart and lung sounds and classify them into... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1 | 
    
| SubjectTerms | Convolution Convolutional Neural Networks Diseases Heart heart sound classification Kernel lung sound classification Lungs Training  | 
    
| Title | Automatic heart and lung sounds classification using convolutional neural networks | 
    
| URI | https://ieeexplore.ieee.org/document/7820741 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEJ3UnjypaY3f2YNHoQgLS4_E2FSTmkZr0lvT3Z01xoaaslz89e4sWKPx4AkCJJAdlnmzvPcG4BJzTLUrfgIhhzrgxs30pRI8iN0Jh--5lobEyZOHbPzM7-fpvANXWy0MInryGYa06__l67WqaalsQN5uglTqOyLPGq1WayR0HQ0HxfTpbloQWysL2yt_tEzxGWO0B5OvezVEkbewtjJUH79sGP_7MPvQ_9bmsek26xxAB8sePBa1XXvzVUYdqi1blpqt3DxmFbVNqpgikEysIB8IRmz3F0aM8_bNW64YOVv6jeeFV32YjW5nN-Og7ZYQvA4jGwhXS6Rc6ViZzCSc8rRWAh3gi40rSmJNmlFhIqXcB03KNEukirTgMk4Q0wyTQ-iW6xKPgDnYFUkpOTnVcxQ8T1QucodcdCyFNtEx9Gg4Fu-NH8aiHYmTvw-fwi6FpKGAnEHXbmo8d4ncygsfwU-E2KHU | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEJ009aAnNa3x2z14FIqwy9JjY2xabZtGa9Jb090djLEBY-Hir3dnwRqNB08QIIHssMyb5b03AJeYoDC2-PGk6hqPp3amL7XkXmhPWHzPjUpJnDyexIMnfjcX8wZcbbQwiOjIZ-jTrvuXb3Jd0lJZh7zdJKnUtwTnXFRqrdpK6DrodnrTx-G0R3yt2K-v_dE0xeWM_i6Mv-5WUUVe_bJQvv74ZcT438fZg_a3Oo9NN3lnHxqYteChVxa5s19l1KO6YMvMsJWdyWxNjZPWTBNMJl6QCwUjvvszI855_e4tV4y8Ld3GMcPXbZj1b2c3A6_ul-C9dIPCk7aaEFybUKdxGnHK1EZLtJAvTG1ZEhpSjco00Np-0pQScaR0YCRXYYQoYowOoJnlGR4Cs8ArUEpx8qrnKHkS6UQmFruYUEmTBkfQouFYvFWOGIt6JI7_PnwB24PZeLQYDSf3J7BD4akIIafQLN5LPLNpvVDnLpqfK9ylIQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+Asia-Pacific+Signal+and+Information+Processing+Association+Annual+Summit+and+Conference+%28APSIPA%29&rft.atitle=Automatic+heart+and+lung+sounds+classification+using+convolutional+neural+networks&rft.au=Qiyu+Chen&rft.au=Weibin+Zhang&rft.au=Xiang+Tian&rft.au=Xiaoxue+Zhang&rft.date=2016-12-01&rft.pub=Asia+Pacific+Signal+and+Information+Processing+Association&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FAPSIPA.2016.7820741&rft.externalDocID=7820741 |