Automatic heart and lung sounds classification using convolutional neural networks

We study the effectiveness of using convolutional neural networks (CNNs) to automatically detect abnormal heart and lung sounds and classify them into different classes in this paper. Heart and respiratory diseases have been affecting humankind for a long time. An effective and automatic diagnostic...

Full description

Saved in:
Bibliographic Details
Published in2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA) pp. 1 - 4
Main Authors Qiyu Chen, Weibin Zhang, Xiang Tian, Xiaoxue Zhang, Shaoqiong Chen, Wenkang Lei
Format Conference Proceeding
LanguageEnglish
Published Asia Pacific Signal and Information Processing Association 01.12.2016
Subjects
Online AccessGet full text
DOI10.1109/APSIPA.2016.7820741

Cover

Abstract We study the effectiveness of using convolutional neural networks (CNNs) to automatically detect abnormal heart and lung sounds and classify them into different classes in this paper. Heart and respiratory diseases have been affecting humankind for a long time. An effective and automatic diagnostic method is highly attractive since it can help discover potential threat at the early stage, even at home without a professional doctor. We collected a data set containing normal and abnormal heart and lung sounds. These sounds were then annotated by professional doctors. CNNs based systems were implemented to automatically classify the heart sounds into one of the seven categories: normal, bruit de galop, mitral inadequacy, mitral stenosis, interventricular septal defect (IVSD), aortic incompetence, aorta stenosis, and the lung sounds into one of the three categories: normal, moist rales, wheezing rale.
AbstractList We study the effectiveness of using convolutional neural networks (CNNs) to automatically detect abnormal heart and lung sounds and classify them into different classes in this paper. Heart and respiratory diseases have been affecting humankind for a long time. An effective and automatic diagnostic method is highly attractive since it can help discover potential threat at the early stage, even at home without a professional doctor. We collected a data set containing normal and abnormal heart and lung sounds. These sounds were then annotated by professional doctors. CNNs based systems were implemented to automatically classify the heart sounds into one of the seven categories: normal, bruit de galop, mitral inadequacy, mitral stenosis, interventricular septal defect (IVSD), aortic incompetence, aorta stenosis, and the lung sounds into one of the three categories: normal, moist rales, wheezing rale.
Author Wenkang Lei
Qiyu Chen
Xiang Tian
Weibin Zhang
Xiaoxue Zhang
Shaoqiong Chen
Author_xml – sequence: 1
  surname: Qiyu Chen
  fullname: Qiyu Chen
  email: chenqiyuscut@qq.com
  organization: South China Univ. of Technol., Guangzhou, China
– sequence: 2
  surname: Weibin Zhang
  fullname: Weibin Zhang
  email: eeweibin@scut.edu.cn
  organization: South China Univ. of Technol., Guangzhou, China
– sequence: 3
  surname: Xiang Tian
  fullname: Xiang Tian
  email: xtian@scut.edu.cn
  organization: South China Univ. of Technol., Guangzhou, China
– sequence: 4
  surname: Xiaoxue Zhang
  fullname: Xiaoxue Zhang
  email: 46683357@qq.com
  organization: Guangdong No. 2 Provincial People's Hosp., Guangzhou, China
– sequence: 5
  surname: Shaoqiong Chen
  fullname: Shaoqiong Chen
  email: 137741110@qq.com
  organization: South China Univ. of Technol., Guangzhou, China
– sequence: 6
  surname: Wenkang Lei
  fullname: Wenkang Lei
  email: lei.wenkang@mail.scut.edu.cn
  organization: South China Univ. of Technol., Guangzhou, China
BookMark eNotj8tKAzEYhSPYha19gm7yAjPmNklmORQvhYJFuy-Z5I8Gp4lMJopvb7VdfXDOx4EzR9cxRUBoRUlNKWnvut3rZtfVjFBZK82IEvQKzVutqVBSM32DXroypaOZgsXvYMYJm-jwUOIbzqlEl7EdTM7BB3tyUsQlh1NnU_xKQ_lLzIAjlPEf03caP_ItmnkzZFheuED7h_v9-qnaPj9u1t22Ci2ZKsU4aYR1zHrpuRBEUmcVUNowL7RijnKhlCfWOgd930jeW-KU6BkHaCTwBVqdZwMAHD7HcDTjz-Hykv8ChuVOcw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/APSIPA.2016.7820741
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9881476828
9789881476821
EndPage 4
ExternalDocumentID 7820741
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-723054cd2cf6f344061dc7e1152f4872d13477f0ccddebb563bc0d74b23ee56e3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:22 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-723054cd2cf6f344061dc7e1152f4872d13477f0ccddebb563bc0d74b23ee56e3
PageCount 4
ParticipantIDs ieee_primary_7820741
PublicationCentury 2000
PublicationDate 2016-Dec.
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationTitle 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)
PublicationTitleAbbrev APSIPA
PublicationYear 2016
Publisher Asia Pacific Signal and Information Processing Association
Publisher_xml – name: Asia Pacific Signal and Information Processing Association
Score 1.7164171
Snippet We study the effectiveness of using convolutional neural networks (CNNs) to automatically detect abnormal heart and lung sounds and classify them into...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Convolution
Convolutional Neural Networks
Diseases
Heart
heart sound classification
Kernel
lung sound classification
Lungs
Training
Title Automatic heart and lung sounds classification using convolutional neural networks
URI https://ieeexplore.ieee.org/document/7820741
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEJ3UnjypaY3f2YNHoQgLS4_E2FSTmkZr0lvT3Z01xoaaslz89e4sWKPx4AkCJJAdlnmzvPcG4BJzTLUrfgIhhzrgxs30pRI8iN0Jh--5lobEyZOHbPzM7-fpvANXWy0MInryGYa06__l67WqaalsQN5uglTqOyLPGq1WayR0HQ0HxfTpbloQWysL2yt_tEzxGWO0B5OvezVEkbewtjJUH79sGP_7MPvQ_9bmsek26xxAB8sePBa1XXvzVUYdqi1blpqt3DxmFbVNqpgikEysIB8IRmz3F0aM8_bNW64YOVv6jeeFV32YjW5nN-Og7ZYQvA4jGwhXS6Rc6ViZzCSc8rRWAh3gi40rSmJNmlFhIqXcB03KNEukirTgMk4Q0wyTQ-iW6xKPgDnYFUkpOTnVcxQ8T1QucodcdCyFNtEx9Gg4Fu-NH8aiHYmTvw-fwi6FpKGAnEHXbmo8d4ncygsfwU-E2KHU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEJ009aAnNa3x2z14FIqwy9JjY2xabZtGa9Jb090djLEBY-Hir3dnwRqNB08QIIHssMyb5b03AJeYoDC2-PGk6hqPp3amL7XkXmhPWHzPjUpJnDyexIMnfjcX8wZcbbQwiOjIZ-jTrvuXb3Jd0lJZh7zdJKnUtwTnXFRqrdpK6DrodnrTx-G0R3yt2K-v_dE0xeWM_i6Mv-5WUUVe_bJQvv74ZcT438fZg_a3Oo9NN3lnHxqYteChVxa5s19l1KO6YMvMsJWdyWxNjZPWTBNMJl6QCwUjvvszI855_e4tV4y8Ld3GMcPXbZj1b2c3A6_ul-C9dIPCk7aaEFybUKdxGnHK1EZLtJAvTG1ZEhpSjco00Np-0pQScaR0YCRXYYQoYowOoJnlGR4Cs8ArUEpx8qrnKHkS6UQmFruYUEmTBkfQouFYvFWOGIt6JI7_PnwB24PZeLQYDSf3J7BD4akIIafQLN5LPLNpvVDnLpqfK9ylIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+Asia-Pacific+Signal+and+Information+Processing+Association+Annual+Summit+and+Conference+%28APSIPA%29&rft.atitle=Automatic+heart+and+lung+sounds+classification+using+convolutional+neural+networks&rft.au=Qiyu+Chen&rft.au=Weibin+Zhang&rft.au=Xiang+Tian&rft.au=Xiaoxue+Zhang&rft.date=2016-12-01&rft.pub=Asia+Pacific+Signal+and+Information+Processing+Association&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FAPSIPA.2016.7820741&rft.externalDocID=7820741