Analysis of visually guided tracking performance in Parkinson's disease

Recent studies have suggested significant differences in motor performances of Parkinson's Disease (PD) patients who have L-dopa induced dyskinesias (LIDs), even when off of L-dopa medication. The pathophysiology of LIDs remains obscure, so applying data-mining techniques to the patients'...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom) pp. 164 - 169
Main Authors Yi Liu, Chonho Lee, Bu-Sung Lee, Stevenson, James K. R., McKeown, Martin J.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2014
Subjects
Online AccessGet full text
DOI10.1109/HealthCom.2014.7001835

Cover

Abstract Recent studies have suggested significant differences in motor performances of Parkinson's Disease (PD) patients who have L-dopa induced dyskinesias (LIDs), even when off of L-dopa medication. The pathophysiology of LIDs remains obscure, so applying data-mining techniques to the patients' motor performance may provide some heuristic insight. This paper investigated visually-guided tracking performance of PD patients using data mining techniques to reveal the differences between dyskinesia and non-dyskinesia patients. We found that K-means clustering of the root mean square (RMS) tracking error at faster tracking speeds and with ambiguous visual stimuli was able to effectively discriminate between the two groups with 77.8% accuracy. Decision tree classification was less accurate (68.4%) and determined that years since diagnosis was the best feature to distinguish between groups. Our results suggest that data mining methodologies may provide novel insights into features of the neurovegetative disease.
AbstractList Recent studies have suggested significant differences in motor performances of Parkinson's Disease (PD) patients who have L-dopa induced dyskinesias (LIDs), even when off of L-dopa medication. The pathophysiology of LIDs remains obscure, so applying data-mining techniques to the patients' motor performance may provide some heuristic insight. This paper investigated visually-guided tracking performance of PD patients using data mining techniques to reveal the differences between dyskinesia and non-dyskinesia patients. We found that K-means clustering of the root mean square (RMS) tracking error at faster tracking speeds and with ambiguous visual stimuli was able to effectively discriminate between the two groups with 77.8% accuracy. Decision tree classification was less accurate (68.4%) and determined that years since diagnosis was the best feature to distinguish between groups. Our results suggest that data mining methodologies may provide novel insights into features of the neurovegetative disease.
Author Bu-Sung Lee
Stevenson, James K. R.
McKeown, Martin J.
Yi Liu
Chonho Lee
Author_xml – sequence: 1
  surname: Yi Liu
  fullname: Yi Liu
  organization: Interdiscipl. Grad. Sch., Nanyang Technol. Univ., Singapore, Singapore
– sequence: 2
  surname: Chonho Lee
  fullname: Chonho Lee
  organization: Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore
– sequence: 3
  surname: Bu-Sung Lee
  fullname: Bu-Sung Lee
  organization: Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore
– sequence: 4
  givenname: James K. R.
  surname: Stevenson
  fullname: Stevenson, James K. R.
  organization: Dept. of Neurosci., Univ. of British Columbia, Vancouver, BC, Canada
– sequence: 5
  givenname: Martin J.
  surname: McKeown
  fullname: McKeown, Martin J.
  organization: Dept. of Neurosci., Univ. of British Columbia, Vancouver, BC, Canada
BookMark eNotj0FLwzAYQCPoQed-gSC5eer80qRpchxFt8FAD7uPr82XGWzTkXRC_72COz14hwfvgd3GMRJjzwJWQoB93RL201czDqsShFrVAMLI6oYtbW2Eqq3VWilzzzbriP2cQ-aj5z8hX7DvZ366BEeOTwm77xBP_EzJj2nA2BEPkX9i-tN5jC-Zu5AJMz2yO499puWVC3Z4fzs022L_sdk1630RLEyF9tYKsti2UJlO2VIKbb0mRXXpay8lQFdS1bWiQrDojAPhCF2lS-29AblgT__ZQETHcwoDpvl4vZO_jr5L3Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/HealthCom.2014.7001835
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479966448
1479966444
EndPage 169
ExternalDocumentID 7001835
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-6f991e9abb058c4923169f6e4e72f7f3300c2e5cb15a09ad8d01dead5626ff803
IEDL.DBID RIE
IngestDate Thu Jun 29 18:35:49 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-6f991e9abb058c4923169f6e4e72f7f3300c2e5cb15a09ad8d01dead5626ff803
PageCount 6
ParticipantIDs ieee_primary_7001835
PublicationCentury 2000
PublicationDate 2014-Oct.
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-Oct.
PublicationDecade 2010
PublicationTitle 2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)
PublicationTitleAbbrev HealthCom
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.5533104
Snippet Recent studies have suggested significant differences in motor performances of Parkinson's Disease (PD) patients who have L-dopa induced dyskinesias (LIDs),...
SourceID ieee
SourceType Publisher
StartPage 164
SubjectTerms Accuracy
Clustering algorithms
Data mining
Decision trees
Dyskinesia
Medical diagnostic imaging
Noise
Parkinson's disease
Tracking performance
Title Analysis of visually guided tracking performance in Parkinson's disease
URI https://ieeexplore.ieee.org/document/7001835
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMcf206eVDbxNzkIXmyX_kqTsziHMPEwYbeRNC9SHN3YWkH_epO221A8eAslkLbJ473kvc83ADdxlHIqUHpKKLtBMWHgcR2jp1A79S9lEukA58kzG7_GT7Nk1oG7HQuDiHXxGfquWefy9TKr3FHZ0OVIbcTQhW7KWcNqtdBvQMWw4XasGbmCrdhvO_-4NaV2GqNDmGyHa2pF3v2qVH729UuJ8b_vcwSDPZ5HXnaO5xg6WPThcSsvQpaGfOSbSi4Wn-StyjVqUq5l5s7EyWrPCZC8II55rvGv2w1pUzUDmI4epvdjr70lwcsFLT1mbISHQipFE57VcmtMGIYxpqFJTRRRmoWYZCpIJBVSc00DbZePjXuYMZxGJ9ArlgWeAkmT2Nq_tlYpnehOKGkoU7cFsVGAiTQ7g777B_NVo4Mxbz___O_HF3Dg5qEpfLuEXrmu8Mo68FJd1zP3DcuHncw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMcfcx70pLKJv81B8GJr2ib9cRbn1G14mLDbSJoXGY5ubK2gf71J220oHryFEkjb_Hgvee_zDcAVC6KYJigcmUizQdG-58SKoSNRWfUvqbmwgHN_EHZf2dOIjxpws2ZhELFMPkPXFstYvpqlhT0qu7UxUuMxbME2Z4zxitaqsV-PJrcVuWMmkk3ZYm5d_ce9KaXZ6OxBf9VglS3y7ha5dNOvX1qM_32jfWhvAD3ysjY9B9DArAUPK4ERMtPkY7IsxHT6Sd6KiUJF8oVI7ak4mW9IATLJiKWeSwDseknqYE0bhp374V3Xqe9JcCYJzZ1QGx8PEyEl5XFaCq6FiQ6RYeTrSAcBpamPPJUeFzQRKlbUU2YAGc8n1DqmwSE0s1mGR0AizswKoMy8FFZ2xxfUF5HdhBg_QAcqPIaW_QfjeaWEMa4__-Tvx5ew0x32e-Pe4-D5FHZtn1RpcGfQzBcFnhtznsuLshe_AT8joRk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+16th+International+Conference+on+e-Health+Networking%2C+Applications+and+Services+%28Healthcom%29&rft.atitle=Analysis+of+visually+guided+tracking+performance+in+Parkinson%27s+disease&rft.au=Yi+Liu&rft.au=Chonho+Lee&rft.au=Bu-Sung+Lee&rft.au=Stevenson%2C+James+K.+R.&rft.date=2014-10-01&rft.pub=IEEE&rft.spage=164&rft.epage=169&rft_id=info:doi/10.1109%2FHealthCom.2014.7001835&rft.externalDocID=7001835