EEG signal features for computer-aided sleep stage detection

Sleep apnea is a disorder in which individuals stop breathing during their sleep. Sleep apnea is categorized as obstructive, central or mixed. New techniques for sleep stage classification are being developed by bioengineers and clinicians for appropriate and timely detection of sleep disorders. The...

Full description

Saved in:
Bibliographic Details
Published in2009 4th International IEEE/EMBS Conference on Neural Engineering pp. 669 - 672
Main Authors Estrada, E., Nazeran, H., Ebrahimi, F., Mikaeili, M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2009
Subjects
Online AccessGet full text
ISBN1424420725
9781424420728
ISSN1948-3546
DOI10.1109/NER.2009.5109385

Cover

Abstract Sleep apnea is a disorder in which individuals stop breathing during their sleep. Sleep apnea is categorized as obstructive, central or mixed. New techniques for sleep stage classification are being developed by bioengineers and clinicians for appropriate and timely detection of sleep disorders. The material presented in this work, includes a compendium of features extracted from the sleep studies of patients suffering from sleep apnea. Twenty-five subjects (21 males and 4 females) were selected (age: 50 plusmn 10 years, range 28-68 years) data was available online at the physionet database. Time and frequency domain algorithms were applied to polysomnographic signals such as EEG, EMG, and EOG signals. Results show that trends provided by this indicators could be used to automatically distinguish between sleep stages at a highly significant level (p < 0.01.) This could prove very helpful in sleep apnea detection.
AbstractList Sleep apnea is a disorder in which individuals stop breathing during their sleep. Sleep apnea is categorized as obstructive, central or mixed. New techniques for sleep stage classification are being developed by bioengineers and clinicians for appropriate and timely detection of sleep disorders. The material presented in this work, includes a compendium of features extracted from the sleep studies of patients suffering from sleep apnea. Twenty-five subjects (21 males and 4 females) were selected (age: 50 plusmn 10 years, range 28-68 years) data was available online at the physionet database. Time and frequency domain algorithms were applied to polysomnographic signals such as EEG, EMG, and EOG signals. Results show that trends provided by this indicators could be used to automatically distinguish between sleep stages at a highly significant level (p < 0.01.) This could prove very helpful in sleep apnea detection.
Author Ebrahimi, F.
Mikaeili, M.
Estrada, E.
Nazeran, H.
Author_xml – sequence: 1
  givenname: E.
  surname: Estrada
  fullname: Estrada, E.
  organization: Dept. of Electr. & Comput. Eng., Univ. of Texas at El Paso, El Paso, TX, USA
– sequence: 2
  givenname: H.
  surname: Nazeran
  fullname: Nazeran, H.
  organization: Dept. of Electr. & Comput. Eng., Univ. of Texas at El Paso, El Paso, TX, USA
– sequence: 3
  givenname: F.
  surname: Ebrahimi
  fullname: Ebrahimi, F.
– sequence: 4
  givenname: M.
  surname: Mikaeili
  fullname: Mikaeili, M.
BookMark eNpFkMFKw0AURUdswaZ2L7iZH0h8L_MymQE3UmIVioJ0XyaTlxJJk5BJF_69AQuu7j2Lcxc3Eouu71iIB4QEEezTR_GVpAA2yWZSJrsREVJKlEKu1O0_pNlCrNCSiVVGeimiWTIWQFm4E5sQvmHuKRBasxLPRbGToTl1rpU1u-kycpB1P0rfn4fLxGPsmoorGVrmQYbJnVhWPLGfmr67F8vatYE311yLw2tx2L7F-8_d-_ZlHzcWplh7Iu80EunMlbWxpkLLqF2uoURfsiajgMnliNah98Sk8sqycrlFzWotHv9mG2Y-DmNzduPP8fqC-gUv30zn
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NER.2009.5109385
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1424420733
9781424420735
EndPage 672
ExternalDocumentID 5109385
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-6c44ca614465abf898d19e16a760b1cbe64830e4a7119a1cc4e437d9e3a7916e3
IEDL.DBID RIE
ISBN 1424420725
9781424420728
ISSN 1948-3546
IngestDate Wed Aug 27 01:57:32 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008900390
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-6c44ca614465abf898d19e16a760b1cbe64830e4a7119a1cc4e437d9e3a7916e3
PageCount 4
ParticipantIDs ieee_primary_5109385
PublicationCentury 2000
PublicationDate 2009-April
PublicationDateYYYYMMDD 2009-04-01
PublicationDate_xml – month: 04
  year: 2009
  text: 2009-April
PublicationDecade 2000
PublicationTitle 2009 4th International IEEE/EMBS Conference on Neural Engineering
PublicationTitleAbbrev NER
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204198
ssj0000452918
Score 1.4606321
Snippet Sleep apnea is a disorder in which individuals stop breathing during their sleep. Sleep apnea is categorized as obstructive, central or mixed. New techniques...
SourceID ieee
SourceType Publisher
StartPage 669
SubjectTerms Biological materials
Biomedical engineering
Brain
EEG signals
Electroencephalography
Feature extraction
Home computing
Muscles
Neural engineering
neural signal processing
Sleep apnea
sleep apnea detection
sleep staging
USA Councils
Title EEG signal features for computer-aided sleep stage detection
URI https://ieeexplore.ieee.org/document/5109385
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXg0W9KkTQPepHMIGyITdhv58Sri6IbrLv71Jv0xUTx4a3po-0jJ9yXvfd9D6IbnidYeGIinshERcZQSw5UhVHk80cpZboJQeDpLJi_icREvOuh2r4UBgKr4DIbhssrlu7XdhaOyURy8j9K4i7pSqlqrtT9PCdbgqllnw5hHVLCqFa7fpqeExyJpdV0RlVHc2j0147RNYVI1mmXPtZFl874fjVcq3Bkfomn7xXW5yftwV5qh_fxl5vjfkI7Q4Fvhh5_22HWMOlD00V2WPeBQ0KFXOIfK8XOLPanFtmn9QIKfpMPbFcAGe1r5CthBWRVzFQM0H2fz-wlpuiuQN0VLklghrK62g7E2eapSxxSwRMuEGmYNJCLlFISWjCnNrBUguHQKuJaeUgI_Qb1iXcApwiY3_lfwK6cC8M8MlFALyzhIJ0XqzBnqh8CXm9o_Y9nEfP737Qt00GZsKLtEvfJjB1ce-EtzXc34F20DpQ0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAC1CK-8cCI2zi241hiQykF2gqhInWrbOeCEFVb0XTh12PnowjEwBZniH1y5Hvnu_cOoSuWRVo7x0AclA0JF2FMDFOGBMr5E61Sy4wnCg9HUf-FP0zEpIGuN1wYACiKz6DjH4tcfrqwa39V1hVe-ygWW2hbuKhClmytzY2KFwdX1UnrxywMOC2a4bpAPSZM8KhmdoWBDEUt-FSN4zqJGajuKHkupSyrGX-0Xik8T28PDes1lwUn7511bjr285ec43-N2kftb44fftp4rwPUgHkL3STJHfYlHXqGMyg0P1fYwVpsq-YPxCtKpng1A1hiByxfAaeQF-Vc8zYa95LxbZ9U_RXImwpyElnOrS4CQqFNFqs4pQpopGUUGGoNRDxmAXAtKVWaWsuBM5kqYFo6UAnsEDXnizkcIWwy434Gd3YqAPdNDwo1t5SBTCWPU3OMWt7w6bJU0JhWNp_8_foS7fTHw8F0cD96PEW7df4moGeomX-s4dzBgNxcFLv_BVOkqF4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+4th+International+IEEE%2FEMBS+Conference+on+Neural+Engineering&rft.atitle=EEG+signal+features+for+computer-aided+sleep+stage+detection&rft.au=Estrada%2C+E.&rft.au=Nazeran%2C+H.&rft.au=Ebrahimi%2C+F.&rft.au=Mikaeili%2C+M.&rft.date=2009-04-01&rft.pub=IEEE&rft.isbn=9781424420728&rft.issn=1948-3546&rft.spage=669&rft.epage=672&rft_id=info:doi/10.1109%2FNER.2009.5109385&rft.externalDocID=5109385
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-3546&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-3546&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-3546&client=summon