DNA Nano array analysis using hierarchical quality threshold clustering
DNA Nano array technology is a challenging area in bioinformatics research, as we have to monitor millions of genes simultaneously. The expression profile of the gene can be useful in cancer disease analysis and its diagnosis. Gene expression data is very voluminous and very difficult to analyze. Se...
        Saved in:
      
    
          | Published in | 2010 2nd IEEE International Conference on Information Management and Engineering pp. 81 - 85 | 
|---|---|
| Main Authors | , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.04.2010
     | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 9781424452637 1424452635  | 
| DOI | 10.1109/ICIME.2010.5477579 | 
Cover
| Abstract | DNA Nano array technology is a challenging area in bioinformatics research, as we have to monitor millions of genes simultaneously. The expression profile of the gene can be useful in cancer disease analysis and its diagnosis. Gene expression data is very voluminous and very difficult to analyze. Several clustering algorithm have been proposed to identify co expressed genes. The Self-organizing-maps (SOM) is a powerful tool for recognizing and classifying features in complex, micro array data. But the interpretation of co-expression of genes are heavily depends on domain knowledge and SOM lacks since the number of clusters must be determined before training. In this work we have proposed dynamically Growing Hierarchical Self Organizing Map (DGHSOM) with Nano array to identify co expressed genes. The DGHSOM overcomes the problem of specifying the number of clusters and total number of iteration before the processing now, we are using QT (quality threshold) clustering is a method of partitioning data, which is invented for gene clustering. It requires more computing power than A-means, but does not require specifying the number of clusters. | 
    
|---|---|
| AbstractList | DNA Nano array technology is a challenging area in bioinformatics research, as we have to monitor millions of genes simultaneously. The expression profile of the gene can be useful in cancer disease analysis and its diagnosis. Gene expression data is very voluminous and very difficult to analyze. Several clustering algorithm have been proposed to identify co expressed genes. The Self-organizing-maps (SOM) is a powerful tool for recognizing and classifying features in complex, micro array data. But the interpretation of co-expression of genes are heavily depends on domain knowledge and SOM lacks since the number of clusters must be determined before training. In this work we have proposed dynamically Growing Hierarchical Self Organizing Map (DGHSOM) with Nano array to identify co expressed genes. The DGHSOM overcomes the problem of specifying the number of clusters and total number of iteration before the processing now, we are using QT (quality threshold) clustering is a method of partitioning data, which is invented for gene clustering. It requires more computing power than A-means, but does not require specifying the number of clusters. | 
    
| Author | Jaiswal, Astha Waoo, Nikhilesh Kashyap, Ramgopal  | 
    
| Author_xml | – sequence: 1 givenname: Nikhilesh surname: Waoo fullname: Waoo, Nikhilesh email: nikhilesh.waoo@gmail.com organization: Oriental Group of Institutes, Bhopal, India – sequence: 2 givenname: Ramgopal surname: Kashyap fullname: Kashyap, Ramgopal email: ramgopalkashyap@yahoo.com organization: R.K.D.F., R.G.T.U., Bhopal, India – sequence: 3 givenname: Astha surname: Jaiswal fullname: Jaiswal, Astha email: astha.jaiswal@bioquant.uni-heidelberg.de organization: D.K.F.Z., Heidelberg, Germany  | 
    
| BookMark | eNpVkLFOwzAYhI2gErTkBWDxC6T8tmO7HqtQSqRSlu6VYzvEyCRgJ0Penkh04ZbTpzvdcEt00_WdQ-iBwJoQUE9VWb3t1hRm5oWUXKorlCm5IQUtCk4FJ9f_mMkFWlIApRjnBG5RltInzJpDCeIO7Z-PW3zUXY91jHrCutNhSj7hMfnuA7feRR1N640O-GfUwQ8THtroUtsHi00Y0-Di3LxHi0aH5LKLr9DpZXcqX_PD-74qt4fcKxhywaUF19SCscIIIBuwwhAmDVGSK1I7K4U0jCsrRN0wpqFhglIra1ANtZyt0OPfrHfOnb-j_9JxOl-uYL9MbVFU | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/ICIME.2010.5477579 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 9781424452651 1424452651  | 
    
| EndPage | 85 | 
    
| ExternalDocumentID | 5477579 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL  | 
    
| ID | FETCH-LOGICAL-i90t-657d0efb6334c60180d6c137c197591bed767c359d66bf33a0f3622d7b09f2d53 | 
    
| IEDL.DBID | RIE | 
    
| ISBN | 9781424452637 1424452635  | 
    
| IngestDate | Wed Aug 27 02:26:20 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| LCCN | 2009935510 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i90t-657d0efb6334c60180d6c137c197591bed767c359d66bf33a0f3622d7b09f2d53 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | ieee_primary_5477579 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2010-April | 
    
| PublicationDateYYYYMMDD | 2010-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2010 text: 2010-April  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 2010 2nd IEEE International Conference on Information Management and Engineering | 
    
| PublicationTitleAbbrev | ICIME | 
    
| PublicationYear | 2010 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0000452706 | 
    
| Score | 1.4834456 | 
    
| Snippet | DNA Nano array technology is a challenging area in bioinformatics research, as we have to monitor millions of genes simultaneously. The expression profile of... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 81 | 
    
| SubjectTerms | Bioinformatics Cancer Clustering algorithms Data analysis Diseases DNA Dynamically growing self organizing map Gene expression Gene expression profile Image processing Monitoring Nano array Organizing QT clustering etc self-organizing maps  | 
    
| Title | DNA Nano array analysis using hierarchical quality threshold clustering | 
    
| URI | https://ieeexplore.ieee.org/document/5477579 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTgIxFG2AlSs1YHynC5cOlOlrujQIggnEBSbsSB93jNGAgZkFfr3tPDAaF-46TTPp9DZz0t5zzkXohkLqYc9vXu6ci5jSJjJWxpEyQjFmnSIqiJOnMzF-Zo8Lvmig270WBgAK8hl0Q7PI5bu1zcNVWY8zKblUTdSUiSi1Wvv7lGANLomotVs8mKzUlk7Vs6xFM0T1JoPJdFgyu6q3_iivUqDL6BBN63mVpJK3bp6Zrv38Zdn434kfoc63jg8_7RHqGDVg1UYP97M77H-qa6w3G73DurIlwYEC_4JDbewiu-CDh0vJ5Q5nPuLbkKjC9j0P1gp-ZAfNR8P5YBxV5RSiV0WywHFxBFIjKGVWBN8uJ2yfSttXkqu-ASeFtJQrJ4RJKdUk9eAWO2mISmPH6QlqrdYrOEVYK38Q0gmwxJ_eLBdJDODRkICwgqZGn6F2WIPlR2mYsaw-__zv7gt0UKbkAx3mErWyTQ5XHukzc12E-Avz9qSc | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTgIxFL1BXOhKDRjfduHSgWH6okuDIChDXGDCjvQ1xmjA4MwCv952HhiNC3edppl0eps5ae855wJcYZs42HOblxpjAiKkCpTmUSAUE4RoI0LhxcnxhA2fyP2MzmpwvdHCWGtz8plt-WaeyzdLnfmrsjYlnFMutmCbEkJoodba3Kh4c3Aeskq9Rb3NSmXqVD7zSjYTivaoN4r7BberfO-PAis5vgz2IK5mVtBKXltZqlr685dp43-nvg_NbyUfetxg1AHU7KIBd7eTG-R-q0skVyu5RrI0JkGeBP-MfHXsPL_gwocK0eUapS7mHz5VhfRb5s0V3MgmTAf9aW8YlAUVghcRpp7lYkKbKIYx0cw7dxmmO5jrjuBUdJQ1nHGNqTCMqQRjGSYO3iLDVSiSyFB8CPXFcmGPAEnhjkKya0nXnd80Zd3IWoeHoWWa4UTJY2j4NZi_F5YZ8_LzT_7uvoSd4TQez8ejycMp7BYJek-OOYN6usrsucP9VF3k4f4CyTWn6Q | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+2nd+IEEE+International+Conference+on+Information+Management+and+Engineering&rft.atitle=DNA+Nano+array+analysis+using+hierarchical+quality+threshold+clustering&rft.au=Waoo%2C+Nikhilesh&rft.au=Kashyap%2C+Ramgopal&rft.au=Jaiswal%2C+Astha&rft.date=2010-04-01&rft.pub=IEEE&rft.isbn=9781424452637&rft.spage=81&rft.epage=85&rft_id=info:doi/10.1109%2FICIME.2010.5477579&rft.externalDocID=5477579 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424452637/lc.gif&client=summon&freeimage=true | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424452637/mc.gif&client=summon&freeimage=true | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424452637/sc.gif&client=summon&freeimage=true |