Brain-computer interface based on high frequency steady-state visual evoked potentials: A feasibility study
Brain-computer interfaces (BCIs) based on steady-state visual evoked potentials (SSVEPs) are systems in which virtual or physical objects are tagged with flicker of different frequencies. When a user focuses on one of the objects its flicker frequency becomes visible in the electroencephalogram (EEG...
Saved in:
Published in | 2009 4th International IEEE/EMBS Conference on Neural Engineering pp. 466 - 469 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2009
|
Subjects | |
Online Access | Get full text |
ISBN | 1424420725 9781424420728 |
ISSN | 1948-3546 |
DOI | 10.1109/NER.2009.5109334 |
Cover
Abstract | Brain-computer interfaces (BCIs) based on steady-state visual evoked potentials (SSVEPs) are systems in which virtual or physical objects are tagged with flicker of different frequencies. When a user focuses on one of the objects its flicker frequency becomes visible in the electroencephalogram (EEG) and so the object on which the user focuses can be determined from brain activity alone. A significant problem inherent to such systems is that typically flicker with frequencies in the range 5 - 30 Hz is used. Flicker in this frequency range is known to elicit easily detectable SSVEPs but is very tiring and annoying for users and can possibly trigger epileptic seizures. In this paper we study the feasibility of using higher frequencies for which the perceived flicker is less intensive. We compare the classification accuracy that can be achieved for stimuli flickering with low frequencies (15 - 20 Hz), medium frequencies (30 - 45 Hz), and high frequencies (50 - 85 Hz). The classification of the data is done with a Bayesian algorithm that learns classification rules and selects optimal electrode pairs. The results show that the medium frequency range can be used to build a high-performance BCI for which the flicker is hardly visible. We also found that for some subjects even high frequency flicker evokes reliably detectable SSVEPs. |
---|---|
AbstractList | Brain-computer interfaces (BCIs) based on steady-state visual evoked potentials (SSVEPs) are systems in which virtual or physical objects are tagged with flicker of different frequencies. When a user focuses on one of the objects its flicker frequency becomes visible in the electroencephalogram (EEG) and so the object on which the user focuses can be determined from brain activity alone. A significant problem inherent to such systems is that typically flicker with frequencies in the range 5 - 30 Hz is used. Flicker in this frequency range is known to elicit easily detectable SSVEPs but is very tiring and annoying for users and can possibly trigger epileptic seizures. In this paper we study the feasibility of using higher frequencies for which the perceived flicker is less intensive. We compare the classification accuracy that can be achieved for stimuli flickering with low frequencies (15 - 20 Hz), medium frequencies (30 - 45 Hz), and high frequencies (50 - 85 Hz). The classification of the data is done with a Bayesian algorithm that learns classification rules and selects optimal electrode pairs. The results show that the medium frequency range can be used to build a high-performance BCI for which the flicker is hardly visible. We also found that for some subjects even high frequency flicker evokes reliably detectable SSVEPs. |
Author | Fimbel, E.J. Keller, T. Hoffmann, U. |
Author_xml | – sequence: 1 givenname: U. surname: Hoffmann fullname: Hoffmann, U. organization: Biorobotics Dept., Fatronik - Tecnalia, San Sebastian, Spain – sequence: 2 givenname: E.J. surname: Fimbel fullname: Fimbel, E.J. organization: Biorobotics Dept., Fatronik - Tecnalia, San Sebastian, Spain – sequence: 3 givenname: T. surname: Keller fullname: Keller, T. organization: Biorobotics Dept., Fatronik - Tecnalia, San Sebastian, Spain |
BookMark | eNpFUF1rAjEQTKlC1fpe6Ev-wNnNx32kb1bsB0gLxXfJXTY1Ve_sJSfcvzelQl92Z5iZZdgxGdRNjYTcMZgxBurhffk54wBqlkYmhLwiYya5lBxyIa7_CU8HZMSULBKRymxIxjFUKACh4IZMvf-GiDlIpooR2T212tVJ1RyOXcCWujpOqyukpfZoaFPTrfvaUtviT4d11VMfUJs-8UEHpCfnO72neGp20XxsAtbB6b1_pHNqUXtXur0Lv6HO9LdkaKOG08uekPXzcr14TVYfL2-L-SpxCkKSxWoKc8OlEGVlpTJSgcyLEvLKZoVmxqTAjITc8pTZHEzGNBagketSIIgJuf876xBxc2zdQbf95vI0cQYCfF8e |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/NER.2009.5109334 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1424420733 9781424420735 |
EndPage | 469 |
ExternalDocumentID | 5109334 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i90t-62049e7d2433bcf49d490478b07cf68a1dd501d407f251f70d61ae80ae2ab3e03 |
IEDL.DBID | RIE |
ISBN | 1424420725 9781424420728 |
ISSN | 1948-3546 |
IngestDate | Wed Aug 27 01:57:32 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2008900390 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-62049e7d2433bcf49d490478b07cf68a1dd501d407f251f70d61ae80ae2ab3e03 |
PageCount | 4 |
ParticipantIDs | ieee_primary_5109334 |
PublicationCentury | 2000 |
PublicationDate | 2009-April |
PublicationDateYYYYMMDD | 2009-04-01 |
PublicationDate_xml | – month: 04 year: 2009 text: 2009-April |
PublicationDecade | 2000 |
PublicationTitle | 2009 4th International IEEE/EMBS Conference on Neural Engineering |
PublicationTitleAbbrev | NER |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003204198 ssj0000452918 |
Score | 1.4567955 |
Snippet | Brain-computer interfaces (BCIs) based on steady-state visual evoked potentials (SSVEPs) are systems in which virtual or physical objects are tagged with... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 466 |
SubjectTerms | Brain computer interfaces Cathode ray tubes Control systems Electrodes Electroencephalography Epilepsy Frequency Independent component analysis Light emitting diodes Steady-state |
Title | Brain-computer interface based on high frequency steady-state visual evoked potentials: A feasibility study |
URI | https://ieeexplore.ieee.org/document/5109334 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwGA_bTp5UNvFNDh7NljbpI95UNoawITJht5E0X2BM2rG1g_nXm_QxUTx4a0pKHv3Il-_1-yF0p-xv1VoFRIWKEw7GEKGtleJHkjITN37IyTQcv_OXeTBvoftDLQwAlMln0HePZSxfZ0nhXGWDwGEfMd5G7SgSVa3WwZ_ioMFFfc66NvMp90oqXGumx4QFPGzqunwa-UED91S34yaEScVgOnyrgCzr8X4Qr5R6Z3SMJs2Mq3STVb_IVT_5_AXm-N8lnaDed4Uffj3orlPUgrSLVk-OL4IkNdEDdlASGyNtV6frNM5S7NCNsdlU-dd7XIrInpRVSXi33BbyA8MuW9nO6yx3iUhWuh_wIzYg6zxc91Gh9z00Gw1nz2NSkzGQpaA5cbD1AiLtc8ZUYrjQXDhgH0WjxISx9LQOqKeteWjsjclEVIeehJhK8KViQNkZ6qRZCucIewqU0vbkkL6xqpErIT0lJbOGqZUVlVygrtunxbqC21jUW3T59-srdNQEeKh3jTr5poAbe0_I1W0pIF_1ubdt |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwGA9zHvSksolvc_BotjRJH_GmsjF1GyITdhtJk4BM2jHbwfzrTfqYKB68NSUlj37ky_f6_QC4kva3KiV9JAPJENPGIK6slUJCgamJaj_kaBwMXtnj1J82wPWmFkZrXSSf6Y57LGL5Ko1z5yrr-g77iLItsO0zFpKyWmvjUXHg4Lw6aV2bEsy8ggzXGuoRoj4L6sougkPi14BPVTuqg5iYd8e9lxLKshrxB_VKoXn6e2BUz7lMOJl38kx24s9fcI7_XdQ-aH_X-MHnjfY6AA2dtMD8zjFGoLiieoAOTGJphO3qtJ2CaQIdvjE0yzIDew0LIVmjoi4Jrt4-cvEO9Sqd286LNHOpSFa-b-AtNFpUmbjuo1yt22DS703uB6iiY0BvHGfIAddzHSrCKJWxYVwx7qB9JA5jE0TCU8rHnrIGorF3JhNiFXhCR1hoIiTVmB6CZpIm-ghAT2oplT07BDFWOTLJhSeFoNY0tdIi42PQcvs0W5SAG7Nqi07-fn0JdgaT0XA2fBg_nYLdOtyDvTPQzJa5Pre3hkxeFMLyBb83urg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+4th+International+IEEE%2FEMBS+Conference+on+Neural+Engineering&rft.atitle=Brain-computer+interface+based+on+high+frequency+steady-state+visual+evoked+potentials%3A+A+feasibility+study&rft.au=Hoffmann%2C+U.&rft.au=Fimbel%2C+E.J.&rft.au=Keller%2C+T.&rft.date=2009-04-01&rft.pub=IEEE&rft.isbn=9781424420728&rft.issn=1948-3546&rft.spage=466&rft.epage=469&rft_id=info:doi/10.1109%2FNER.2009.5109334&rft.externalDocID=5109334 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-3546&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-3546&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-3546&client=summon |