Job Scheduling Optimization for Multi-user MapReduce Clusters

A shared MapReduce cluster is beneficial to build data warehouse which can be used by multiple users. FAIR scheduler gives each user the illusion of owning a private cluster. Moreover, it can dynamic redistribute capacity unused by some users to other users. However, when reassigning the slots, FAIR...

Full description

Saved in:
Bibliographic Details
Published in2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming pp. 213 - 217
Main Authors Yongcai Tao, Qing Zhang, Lei Shi, Pinhua Chen
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2011
Subjects
Online AccessGet full text
ISBN1457718081
9781457718083
ISSN2168-3034
DOI10.1109/PAAP.2011.33

Cover

Abstract A shared MapReduce cluster is beneficial to build data warehouse which can be used by multiple users. FAIR scheduler gives each user the illusion of owning a private cluster. Moreover, it can dynamic redistribute capacity unused by some users to other users. However, when reassigning the slots, FAIR picks the most recently launched tasks to kill without considering the job character and data locality, which increases the network traffic while rescheduling the killed Map/Reduce tasks. The paper, based on FAIR scheduling, proposes an improved FAIR scheduling algorithm, which take into account the job character and data locality while killing tasks to make slots for new users. Performance evaluation results demonstrate that the improved FAIR decreases the data movement, speeds the execution of jobs, consequently improving the system performance.
AbstractList A shared MapReduce cluster is beneficial to build data warehouse which can be used by multiple users. FAIR scheduler gives each user the illusion of owning a private cluster. Moreover, it can dynamic redistribute capacity unused by some users to other users. However, when reassigning the slots, FAIR picks the most recently launched tasks to kill without considering the job character and data locality, which increases the network traffic while rescheduling the killed Map/Reduce tasks. The paper, based on FAIR scheduling, proposes an improved FAIR scheduling algorithm, which take into account the job character and data locality while killing tasks to make slots for new users. Performance evaluation results demonstrate that the improved FAIR decreases the data movement, speeds the execution of jobs, consequently improving the system performance.
Author Pinhua Chen
Qing Zhang
Lei Shi
Yongcai Tao
Author_xml – sequence: 1
  surname: Yongcai Tao
  fullname: Yongcai Tao
  email: ieyctao@zzu.edu.cn
  organization: Sch. of Inf. Eng., Zhengzhou Univ., Zhengzhou, China
– sequence: 2
  surname: Qing Zhang
  fullname: Qing Zhang
  email: ieqzhang@zzu.edu.cn
  organization: Sch. of Inf. Eng., Zhengzhou Univ., Zhengzhou, China
– sequence: 3
  surname: Lei Shi
  fullname: Lei Shi
  email: shilei@zzu.edu.cn
  organization: Sch. of Inf. Eng., Zhengzhou Univ., Zhengzhou, China
– sequence: 4
  surname: Pinhua Chen
  fullname: Pinhua Chen
  email: xingkongsoft@163.com
  organization: Dept. of Electron. & Inf. Eng., Huazhong Univ. of Sci. & Technol., Wuhan, China
BookMark eNotjD1PwzAUAC3RSrSlGxtL_kDCe3HsvAwMUQQFVNQKuleO8wxGaRLlY4BfTxFMd8PplmLWtA0LcY0QIUJ2u8_zfRQDYiTlhVhiotIUCQhnYhGjplCCTOZi-ZtkUqlUXor1MHwCgETKSMNC3D23ZfBmP7iaat-8B7tu9Cf_bUbfNoFr--BlqkcfTgOf1XSv585yUNTTMHI_XIm5M_XA63-uxOHh_lA8htvd5qnIt6HPYAxVVkJqbWwoBUcZWsuUOrTKuEqTppKMIo4rdpUCdkZqiUliKDFx6RgquRI3f1vPzMeu9yfTfx01xqRAyR-5IUvU
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PAAP.2011.33
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 217
ExternalDocumentID 6128505
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-59b07cc2a870f891cce87f1c5afd6868b8a58e2defd50efa363144a84a2bfe0d3
IEDL.DBID RIE
ISBN 1457718081
9781457718083
ISSN 2168-3034
IngestDate Wed Aug 27 04:00:16 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2011935573
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-59b07cc2a870f891cce87f1c5afd6868b8a58e2defd50efa363144a84a2bfe0d3
PageCount 5
ParticipantIDs ieee_primary_6128505
PublicationCentury 2000
PublicationDate 2011-Dec.
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-Dec.
PublicationDecade 2010
PublicationTitle 2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming
PublicationTitleAbbrev paap
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003189860
ssj0000669468
Score 1.5385407
Snippet A shared MapReduce cluster is beneficial to build data warehouse which can be used by multiple users. FAIR scheduler gives each user the illusion of owning a...
SourceID ieee
SourceType Publisher
StartPage 213
SubjectTerms Benchmark testing
Educational institutions
File systems
Hadoop
HDFS
job Scheduling
MapReduce
Scheduling
Scheduling algorithm
Tin
Title Job Scheduling Optimization for Multi-user MapReduce Clusters
URI https://ieeexplore.ieee.org/document/6128505
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbHhhxm8R2Yo9VRVUhFSpUpG6VY18EAkoFycKv5-ykBSEGtjiT4497T5d77wi5jLj1rIOzGBLBBFJ2pg2XzAmbWDCxE3WB7G06eRA3C7lokautFgYAQvEZ9P1j-Jfv3mzlU2UDRGMlvWHpTqbSWqu1zacgdGrRUGc_xrOqVRAJJ3GqGEZqEXRdMsNojDi4sXtqxnxbFK8Hs-FwVpt7-na6P5quBMwZd8h0M9u61OS5X5V5337-MnL87-fskd63uo_Otri1T1qwOiCdTXsH2tz2LkGymuPoEcHIa9bpHUaX10a2SZHr0iDeZT7NQadmfe9NYIGOXirvvfDRI_Px9Xw0YU23Bfako5JJnUeZtYnBC1woHVsLKitiK03hUpWqXBmpIHFQOBlBYXjKcWONEibJC4gcPyTt1dsKjghV1uhU2MhakQmQ2sRFZJAoxhy3Pk_cMen6xViuaz-NZbMOJ3-_PiW7IY8bSkjOSLt8r-AciUCZX4QT8AWi4KtB
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSECsbf9uDRwra2W3skRIIKSAwm3EjXdtGoQHS7-Nf72g00xoO3daeuP9735e1930PoMqDasQ5KQhsxwoCyE6koJ4bpSFsVGlYWyI7jwSO7nfFZDV1ttDDWWl98Ztvu0f_LN0tduFRZB9BYcGdYusUZY7xUa20yKgCeklXk2Y3htErhZcJRGAsCsZp5ZRdPIB4DEq4Nn6ox3ZTFy86k252U9p6uoe6PtisedfoNNFrPtyw2eWkXedrWn7-sHP_7Qbuo9a3vw5MNcu2hml3so8a6wQOu7nsTAV1NYfQEcORU6_ge4stbJdzEwHaxl-8Sl-jAI7V6cDawFvdeC-e-8NFC0_71tDcgVb8F8iyDnHCZBonWkYIrnAkZam1FkoWaq8zEIhapUFzYyNjM8MBmisYUtlYJpqI0s4GhB6i-WC7sIcJCKxkzHWjNEma5VGEWKKCKIYXNTyNzhJpuMear0lFjXq3D8d-vL9D2YDoazoc347sTtOOzur6g5BTV8_fCngEtyNNzfxq-ANHyro4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+Fourth+International+Symposium+on+Parallel+Architectures%2C+Algorithms+and+Programming&rft.atitle=Job+Scheduling+Optimization+for+Multi-user+MapReduce+Clusters&rft.au=Yongcai+Tao&rft.au=Qing+Zhang&rft.au=Lei+Shi&rft.au=Pinhua+Chen&rft.date=2011-12-01&rft.pub=IEEE&rft.isbn=9781457718083&rft.issn=2168-3034&rft.spage=213&rft.epage=217&rft_id=info:doi/10.1109%2FPAAP.2011.33&rft.externalDocID=6128505
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-3034&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-3034&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-3034&client=summon