Job Scheduling Optimization for Multi-user MapReduce Clusters
A shared MapReduce cluster is beneficial to build data warehouse which can be used by multiple users. FAIR scheduler gives each user the illusion of owning a private cluster. Moreover, it can dynamic redistribute capacity unused by some users to other users. However, when reassigning the slots, FAIR...
Saved in:
| Published in | 2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming pp. 213 - 217 |
|---|---|
| Main Authors | , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.12.2011
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 1457718081 9781457718083 |
| ISSN | 2168-3034 |
| DOI | 10.1109/PAAP.2011.33 |
Cover
| Abstract | A shared MapReduce cluster is beneficial to build data warehouse which can be used by multiple users. FAIR scheduler gives each user the illusion of owning a private cluster. Moreover, it can dynamic redistribute capacity unused by some users to other users. However, when reassigning the slots, FAIR picks the most recently launched tasks to kill without considering the job character and data locality, which increases the network traffic while rescheduling the killed Map/Reduce tasks. The paper, based on FAIR scheduling, proposes an improved FAIR scheduling algorithm, which take into account the job character and data locality while killing tasks to make slots for new users. Performance evaluation results demonstrate that the improved FAIR decreases the data movement, speeds the execution of jobs, consequently improving the system performance. |
|---|---|
| AbstractList | A shared MapReduce cluster is beneficial to build data warehouse which can be used by multiple users. FAIR scheduler gives each user the illusion of owning a private cluster. Moreover, it can dynamic redistribute capacity unused by some users to other users. However, when reassigning the slots, FAIR picks the most recently launched tasks to kill without considering the job character and data locality, which increases the network traffic while rescheduling the killed Map/Reduce tasks. The paper, based on FAIR scheduling, proposes an improved FAIR scheduling algorithm, which take into account the job character and data locality while killing tasks to make slots for new users. Performance evaluation results demonstrate that the improved FAIR decreases the data movement, speeds the execution of jobs, consequently improving the system performance. |
| Author | Pinhua Chen Qing Zhang Lei Shi Yongcai Tao |
| Author_xml | – sequence: 1 surname: Yongcai Tao fullname: Yongcai Tao email: ieyctao@zzu.edu.cn organization: Sch. of Inf. Eng., Zhengzhou Univ., Zhengzhou, China – sequence: 2 surname: Qing Zhang fullname: Qing Zhang email: ieqzhang@zzu.edu.cn organization: Sch. of Inf. Eng., Zhengzhou Univ., Zhengzhou, China – sequence: 3 surname: Lei Shi fullname: Lei Shi email: shilei@zzu.edu.cn organization: Sch. of Inf. Eng., Zhengzhou Univ., Zhengzhou, China – sequence: 4 surname: Pinhua Chen fullname: Pinhua Chen email: xingkongsoft@163.com organization: Dept. of Electron. & Inf. Eng., Huazhong Univ. of Sci. & Technol., Wuhan, China |
| BookMark | eNotjD1PwzAUAC3RSrSlGxtL_kDCe3HsvAwMUQQFVNQKuleO8wxGaRLlY4BfTxFMd8PplmLWtA0LcY0QIUJ2u8_zfRQDYiTlhVhiotIUCQhnYhGjplCCTOZi-ZtkUqlUXor1MHwCgETKSMNC3D23ZfBmP7iaat-8B7tu9Cf_bUbfNoFr--BlqkcfTgOf1XSv585yUNTTMHI_XIm5M_XA63-uxOHh_lA8htvd5qnIt6HPYAxVVkJqbWwoBUcZWsuUOrTKuEqTppKMIo4rdpUCdkZqiUliKDFx6RgquRI3f1vPzMeu9yfTfx01xqRAyR-5IUvU |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/PAAP.2011.33 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 217 |
| ExternalDocumentID | 6128505 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i90t-59b07cc2a870f891cce87f1c5afd6868b8a58e2defd50efa363144a84a2bfe0d3 |
| IEDL.DBID | RIE |
| ISBN | 1457718081 9781457718083 |
| ISSN | 2168-3034 |
| IngestDate | Wed Aug 27 04:00:16 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCN | 2011935573 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-59b07cc2a870f891cce87f1c5afd6868b8a58e2defd50efa363144a84a2bfe0d3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_6128505 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-Dec. |
| PublicationDateYYYYMMDD | 2011-12-01 |
| PublicationDate_xml | – month: 12 year: 2011 text: 2011-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | 2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming |
| PublicationTitleAbbrev | paap |
| PublicationYear | 2011 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003189860 ssj0000669468 |
| Score | 1.5385407 |
| Snippet | A shared MapReduce cluster is beneficial to build data warehouse which can be used by multiple users. FAIR scheduler gives each user the illusion of owning a... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 213 |
| SubjectTerms | Benchmark testing Educational institutions File systems Hadoop HDFS job Scheduling MapReduce Scheduling Scheduling algorithm Tin |
| Title | Job Scheduling Optimization for Multi-user MapReduce Clusters |
| URI | https://ieeexplore.ieee.org/document/6128505 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbHhhxm8R2Yo9VRVUhFSpUpG6VY18EAkoFycKv5-ykBSEGtjiT4497T5d77wi5jLj1rIOzGBLBBFJ2pg2XzAmbWDCxE3WB7G06eRA3C7lokautFgYAQvEZ9P1j-Jfv3mzlU2UDRGMlvWHpTqbSWqu1zacgdGrRUGc_xrOqVRAJJ3GqGEZqEXRdMsNojDi4sXtqxnxbFK8Hs-FwVpt7-na6P5quBMwZd8h0M9u61OS5X5V5337-MnL87-fskd63uo_Otri1T1qwOiCdTXsH2tz2LkGymuPoEcHIa9bpHUaX10a2SZHr0iDeZT7NQadmfe9NYIGOXirvvfDRI_Px9Xw0YU23Bfako5JJnUeZtYnBC1woHVsLKitiK03hUpWqXBmpIHFQOBlBYXjKcWONEibJC4gcPyTt1dsKjghV1uhU2MhakQmQ2sRFZJAoxhy3Pk_cMen6xViuaz-NZbMOJ3-_PiW7IY8bSkjOSLt8r-AciUCZX4QT8AWi4KtB |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSECsbf9uDRwra2W3skRIIKSAwm3EjXdtGoQHS7-Nf72g00xoO3daeuP9735e1930PoMqDasQ5KQhsxwoCyE6koJ4bpSFsVGlYWyI7jwSO7nfFZDV1ttDDWWl98Ztvu0f_LN0tduFRZB9BYcGdYusUZY7xUa20yKgCeklXk2Y3htErhZcJRGAsCsZp5ZRdPIB4DEq4Nn6ox3ZTFy86k252U9p6uoe6PtisedfoNNFrPtyw2eWkXedrWn7-sHP_7Qbuo9a3vw5MNcu2hml3so8a6wQOu7nsTAV1NYfQEcORU6_ge4stbJdzEwHaxl-8Sl-jAI7V6cDawFvdeC-e-8NFC0_71tDcgVb8F8iyDnHCZBonWkYIrnAkZam1FkoWaq8zEIhapUFzYyNjM8MBmisYUtlYJpqI0s4GhB6i-WC7sIcJCKxkzHWjNEma5VGEWKKCKIYXNTyNzhJpuMear0lFjXq3D8d-vL9D2YDoazoc347sTtOOzur6g5BTV8_fCngEtyNNzfxq-ANHyro4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+Fourth+International+Symposium+on+Parallel+Architectures%2C+Algorithms+and+Programming&rft.atitle=Job+Scheduling+Optimization+for+Multi-user+MapReduce+Clusters&rft.au=Yongcai+Tao&rft.au=Qing+Zhang&rft.au=Lei+Shi&rft.au=Pinhua+Chen&rft.date=2011-12-01&rft.pub=IEEE&rft.isbn=9781457718083&rft.issn=2168-3034&rft.spage=213&rft.epage=217&rft_id=info:doi/10.1109%2FPAAP.2011.33&rft.externalDocID=6128505 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-3034&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-3034&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-3034&client=summon |