Adult image content filtering: A statistical method based on Multi-Color Skin Modeling

Automatic skin detection is a key enabler of various imaging applications, such as face detection, human tracking, and adult content filtering. In 1996, the first paper on identifying nude pictures was published. Since then, different researchers argue different color models to be the best choice fo...

Full description

Saved in:
Bibliographic Details
Published inThe 10th IEEE International Symposium on Signal Processing and Information Technology pp. 366 - 370
Main Authors Mofaddel, M A, Sadek, S
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2010
Subjects
Online AccessGet full text
ISBN9781424499922
1424499925
ISSN2162-7843
DOI10.1109/ISSPIT.2010.5711812

Cover

Abstract Automatic skin detection is a key enabler of various imaging applications, such as face detection, human tracking, and adult content filtering. In 1996, the first paper on identifying nude pictures was published. Since then, different researchers argue different color models to be the best choice for skin detection. But, to the best our knowledge, no significant work has been reported previously that attempted to use more than one color model and evaluate the performance for recognizing adult contents. In this paper, a simple statistical framework for recognizing adult images based on an MCSM (Multi-Color Skin Model) is described. From a high level, our approach works in two steps. First, skin regions in an input image are detected using the MCSM. Then these suspected regions are fed into a specialized geometrical analyzer that attempts to assemble a human figure using simple geometric shapes derived from human body structure. Quantitative evaluation shows that our method compares favorably with the state-of-the-art methods in terms of detection rate and false alarm, while reducing the computational complexity by a factor of 1/6 with respect to the Forsyth's method.
AbstractList Automatic skin detection is a key enabler of various imaging applications, such as face detection, human tracking, and adult content filtering. In 1996, the first paper on identifying nude pictures was published. Since then, different researchers argue different color models to be the best choice for skin detection. But, to the best our knowledge, no significant work has been reported previously that attempted to use more than one color model and evaluate the performance for recognizing adult contents. In this paper, a simple statistical framework for recognizing adult images based on an MCSM (Multi-Color Skin Model) is described. From a high level, our approach works in two steps. First, skin regions in an input image are detected using the MCSM. Then these suspected regions are fed into a specialized geometrical analyzer that attempts to assemble a human figure using simple geometric shapes derived from human body structure. Quantitative evaluation shows that our method compares favorably with the state-of-the-art methods in terms of detection rate and false alarm, while reducing the computational complexity by a factor of 1/6 with respect to the Forsyth's method.
Author Sadek, S
Mofaddel, M A
Author_xml – sequence: 1
  givenname: M A
  surname: Mofaddel
  fullname: Mofaddel, M A
  email: mmofaddel@hotmail.com
  organization: Dept. of Math. & Comput. Sci., Sohag Univ., Sohag, Egypt
– sequence: 2
  givenname: S
  surname: Sadek
  fullname: Sadek, S
  email: samy.bakheet@ovgu.de
  organization: Dept. of Math. & Comput. Sci., Sohag Univ., Sohag, Egypt
BookMark eNpVkM1KAzEUhSNWsNY-QTd5galJJpMfd6VoHagotLgt-bmp0elEZuLCtzdgN97N4Rz4LveeGzTpUw8ILShZUkr0Xbvbvbb7JSMlaCSlirILNNdSUc4411oTdfnPMzZBU0YFq6Ti9TWaj-MHKdOw4tUUva38d5dxPJkjYJf6DH3GIXYZhtgf7_EKj9nkOOboTIdPkN-Tx9aM4HHq8XNhY7VOXRrw7jOWIHnoCniLroLpRpifdYb2jw_79VO1fdm069W2iprkqhHWi3KW5ZwKxxV3BqgNEFwTKDMyWCV9LUzwVjoK1gluiRNC6oZIxkI9Q4u_tREADl9DeWP4OZyLqX8BQFlXgQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISSPIT.2010.5711812
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424499908
9781424499915
1424499909
1424499917
EndPage 370
ExternalDocumentID 5711812
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-56bd6843b4416c484cae1bfefc5f12a7fb87d36afdb7c1ebc64b0c667950722f3
IEDL.DBID RIE
ISBN 9781424499922
1424499925
ISSN 2162-7843
IngestDate Wed Aug 27 03:31:16 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-56bd6843b4416c484cae1bfefc5f12a7fb87d36afdb7c1ebc64b0c667950722f3
PageCount 5
ParticipantIDs ieee_primary_5711812
PublicationCentury 2000
PublicationDate 2010-Dec.
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-Dec.
PublicationDecade 2010
PublicationTitle The 10th IEEE International Symposium on Signal Processing and Information Technology
PublicationTitleAbbrev ISSPIT
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000527848
ssj0003188634
Score 1.4870268
Snippet Automatic skin detection is a key enabler of various imaging applications, such as face detection, human tracking, and adult content filtering. In 1996, the...
SourceID ieee
SourceType Publisher
StartPage 366
SubjectTerms adult content
content-based retrieval
Feature extraction
Image edge detection
Joints
object recognition
Skin
Skin detection
Title Adult image content filtering: A statistical method based on Multi-Color Skin Modeling
URI https://ieeexplore.ieee.org/document/5711812
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ1h4tIi3PDDikjiOE7NVFVWLVFSpBXWrbMeWKqBFVbrw67lL0vAQA1ucSHlcrLvPvvu-I-RaWYuMxYhZn3EmnJFMaW-Z8WFmEh0JFSDBefQoB0_iYRbPGuSm5sI454riM9fBwyKXn63sBrfKYPGONElwuDtJKkuuVr2fEsSYQkvrMczVVBZJZR5KAJGpiLa8LsBEPN7KPVVjXikShYG6HU4m4-G0LPuqHvmj90oRevr7ZLR96bLi5KWzyU3HfvzSc_zvVx2Q9hfJj47r8HVIGm55RPa-6RO2yHMX1Tno4g2cDsWidrgR9QtMsMP1O9qlyEcqpJ71Ky2bUVOMixldLWnB7WU98K5rij2-KPZdQ_Z7m0z799PegFWNGNhCBTmLpckk2M8AdJJWpMJqFxrvvI19yHXiTZpkkdQe_q4NnbFSmMBKmSgAm5z76Jg0l6ulOyFUAVrTQkDU1EYo7GUlAp1FPDS4Vo6DU9JCA83fS6mNeWWbs79Pn5NdXleXXJBmvt64S8AIubkqJscn7My0TA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMgALjxbxxgMjKYljOzFbVVG10FaVGlC3ynZsqQJaVKULvx5fkoaHGNjiRMrjYt199t33HULXQmtgLIaetinxqFHcE9JqT9kgVZEMqfCB4Dwc8d4TfZiyaQ3dVFwYY0xefGZacJjn8tOlXsNWmVu8A03SOdwtRillBVur2lHxGSTR4mrsZmvM87QyCbiDkTENN8wuh4oI2wg-lWNSahIFvrjtTybjflIUfpUP_dF9JQ8-3T003Lx2UXPy0lpnqqU_fik6_ve79lHzi-aHx1UAO0A1szhEu98UChvouQ36HHj-5twOhrJ2dyNs55Bid9fvcBsDIykXe5avuGhHjSEypni5wDm71-s4_7rC0OULQ-c14L83UdK9Tzo9r2zF4M2Fn3mMq5Q7-ykHnrimMdXSBMoaq5kNiIysiqM05NK6_6sDozSnytecR8LBTUJseITqi-XCHCMsHF6TlLq4KRUV0M2K-jINSaBgtcz8E9QAA83eC7GNWWmb079PX6HtXjIczAb90eMZ2iFVrck5qmertblwiCFTl_lE-QSVmLeZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=The+10th+IEEE+International+Symposium+on+Signal+Processing+and+Information+Technology&rft.atitle=Adult+image+content+filtering%3A+A+statistical+method+based+on+Multi-Color+Skin+Modeling&rft.au=Mofaddel%2C+M+A&rft.au=Sadek%2C+S&rft.date=2010-12-01&rft.pub=IEEE&rft.isbn=9781424499922&rft.issn=2162-7843&rft.spage=366&rft.epage=370&rft_id=info:doi/10.1109%2FISSPIT.2010.5711812&rft.externalDocID=5711812
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-7843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-7843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-7843&client=summon