What's that Style? A CNN-based Approach for Classification and Retrieval of Building Images

Image classification and content-based image retrieval (CBIR) are important problems in the field of computer vision. In recent years, convolutional neural networks (CNNs) have become the tool of choice for building state-of-the-art image classification systems. In this paper, we propose novel mid-l...

Full description

Saved in:
Bibliographic Details
Published in2017 Ninth International Conference on Advances in Pattern Recognition (ICAPR) pp. 1 - 6
Main Authors Meltser, Rachel D., Banerji, Sugata, Sinha, Atreyee
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2017
Subjects
Online AccessGet full text
DOI10.1109/ICAPR.2017.8593206

Cover

Abstract Image classification and content-based image retrieval (CBIR) are important problems in the field of computer vision. In recent years, convolutional neural networks (CNNs) have become the tool of choice for building state-of-the-art image classification systems. In this paper, we propose novel mid-level representations involving the use of a pre-trained CNN for feature extraction and use them to solve both the classification and the retrieval problems on a dataset of building images with different architectural styles. We experimentally establish our intuitive understanding of the CNN features from different layers, and also combine the proposed representations with several different pre-processing and classification techniques to form a novel architectural image classification and retrieval system.
AbstractList Image classification and content-based image retrieval (CBIR) are important problems in the field of computer vision. In recent years, convolutional neural networks (CNNs) have become the tool of choice for building state-of-the-art image classification systems. In this paper, we propose novel mid-level representations involving the use of a pre-trained CNN for feature extraction and use them to solve both the classification and the retrieval problems on a dataset of building images with different architectural styles. We experimentally establish our intuitive understanding of the CNN features from different layers, and also combine the proposed representations with several different pre-processing and classification techniques to form a novel architectural image classification and retrieval system.
Author Meltser, Rachel D.
Banerji, Sugata
Sinha, Atreyee
Author_xml – sequence: 1
  givenname: Rachel D.
  surname: Meltser
  fullname: Meltser, Rachel D.
  organization: Lake Forest College, Lake Forest, IL, 60045
– sequence: 2
  givenname: Sugata
  surname: Banerji
  fullname: Banerji, Sugata
  organization: Lake Forest College, Lake Forest, IL, 60045
– sequence: 3
  givenname: Atreyee
  surname: Sinha
  fullname: Sinha, Atreyee
  organization: Edgewood College, Madison, WI, 53711
BookMark eNotj81Kw0AYRUdQ0Na-gG5m5ypxfjLpZCUx-FMoVWrBhYvyzeSbdiRNQmYU-vYG7Oqs7uGeCTlvuxYJueEs5ZwV94uqfF-ngvF5qlUhBcvPyIQrqXMhMp5fklkI34wxkWupdXZFvj73EO8CjSPoRzw2-EBLWq1WiYGANS37fujA7qnrBlo1EIJ33kL0XUuhreka4-DxFxraOfr445vatzu6OMAOwzW5cNAEnJ04JZvnp031mizfXsajy8QXLCZKaGGNZWi0UNpIwxRKk2di7hww6bi1DrGwwLQGDplVhmvLM4VCOj0OpuT2X-sRcdsP_gDDcXvKl39MklKK
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICAPR.2017.8593206
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538622416
9781538622414
EndPage 6
ExternalDocumentID 8593206
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-5282cbc0eb8258b3b05e3b6427ffa03f1ccfee9ca088a1a4c5b18c145e23f88b3
IEDL.DBID RIE
IngestDate Wed Aug 27 03:00:12 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-5282cbc0eb8258b3b05e3b6427ffa03f1ccfee9ca088a1a4c5b18c145e23f88b3
PageCount 6
ParticipantIDs ieee_primary_8593206
PublicationCentury 2000
PublicationDate 2017-Dec.
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-Dec.
PublicationDecade 2010
PublicationTitle 2017 Ninth International Conference on Advances in Pattern Recognition (ICAPR)
PublicationTitleAbbrev ICAPR
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683884
Score 1.7039227
Snippet Image classification and content-based image retrieval (CBIR) are important problems in the field of computer vision. In recent years, convolutional neural...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Buildings
Eigenvalues and eigenfunctions
Feature extraction
Principal component analysis
Support vector machines
Task analysis
Visualization
Title What's that Style? A CNN-based Approach for Classification and Retrieval of Building Images
URI https://ieeexplore.ieee.org/document/8593206
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ08qm_ibHAQvtkt_pyeZw-GEjTEnDDyM_HgBUTtx3UH_el_SbqJ48NRSCCl5Tb689HvfR8h5mmZ5wnF-54E0mKBo6QlEcQ_iUIJgOjJOvng4Sm8f4rtZMmuQy00tDAA48hn49tb9y9cLtbJHZR2rzRVafe2tjKdVrdbmPCVMecR5vK6LYXln0OuOJ5a8lfl1wx8OKg5A-jtkuO664o08-6tS-urzlyrjf99tl7S_S_XoeANCe6QBRYs8WkHuiyUt8ULvy48XuKJd2huNPAtamnZrIXGKO1bqbDEtYcjFiIpC04mz2cJvkC4Mva6Ns-ngFdeeZZtM-zfT3q1Xuyh4TzkrMdHkoZKKgcRckMtIsgQiiVlHZoxgGAqlDECuBC43IhCxSmTAVRAnEEaGY4N90iwWBRwQGkRGK6OtBB-LNRMcZIrbF60DGag0zg5Jy47L_K3SyZjXQ3L09-Njsm1jU1FDTkizfF_BKQJ8Kc9cZL8A61OmFQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5jHvSksonf5iB4sV0_0jY9yRyOTbcy5oSBh5GPNyBqJ6476K83SbuJ4sFTSyGk5G3y5E2f93kQOo_jJI2ont-pz5VOUCR3mEZxB0jAgXkyVFa-eJjFvQdyO42mNXS5roUBAEs-A9fc2n_5ci6W5qisZbS5AqOvvRERQqKyWmt9ohLENKSUrCpjvLTV77RHY0PfStyq6Q8PFQsh3W00XHVeMkee3WXBXfH5S5fxv2-3g5rfxXp4tIahXVSDvIEejST3xQIX-oLvi48XuMJt3Mkyx8CWxO1KShzrPSu2xpiGMmSjhFku8dgabemvEM8Vvq6ss3H_Va8-iyaadG8mnZ5T-Sg4T6lX6FSTBoILD7jOBikPuRdByHXekSjFPB0MIRRAKphecJjPiIi4T4VPIghCRXWDPVTP5znsI-yHSgoljQifR6THKPBYb2Ck9LkvYpIcoIYZl9lbqZQxq4bk8O_HZ2izNxkOZoN-dneEtkycSqLIMaoX70s40XBf8FMb5S_NV6li
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+Ninth+International+Conference+on+Advances+in+Pattern+Recognition+%28ICAPR%29&rft.atitle=What%27s+that+Style%3F+A+CNN-based+Approach+for+Classification+and+Retrieval+of+Building+Images&rft.au=Meltser%2C+Rachel+D.&rft.au=Banerji%2C+Sugata&rft.au=Sinha%2C+Atreyee&rft.date=2017-12-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICAPR.2017.8593206&rft.externalDocID=8593206