Challenges and possible solutions to density based clustering
Clustering is an interdisciplinary-studied subject of statistical data analysis. In this study, among various types of clustering algorithms, the algorithms derived from Density Based Spatial Clustering of Applications with Noise (DBSCAN) are investigated. Although DBSCAN is the well-known density-b...
Saved in:
Published in | 2016 IEEE 8th International Conference on Intelligent Systems (IS) pp. 492 - 498 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2016
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/IS.2016.7737466 |
Cover
Summary: | Clustering is an interdisciplinary-studied subject of statistical data analysis. In this study, among various types of clustering algorithms, the algorithms derived from Density Based Spatial Clustering of Applications with Noise (DBSCAN) are investigated. Although DBSCAN is the well-known density-based algorithms it has some bottlenecks. So, enhanced versions of DBSCAN are developed to provide some solutions and to ameliorate the algorithm. In this study, we provide a compact source of DBSCAN-based algorithms for the mentioned challenges. |
---|---|
DOI: | 10.1109/IS.2016.7737466 |