Challenges and possible solutions to density based clustering

Clustering is an interdisciplinary-studied subject of statistical data analysis. In this study, among various types of clustering algorithms, the algorithms derived from Density Based Spatial Clustering of Applications with Noise (DBSCAN) are investigated. Although DBSCAN is the well-known density-b...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE 8th International Conference on Intelligent Systems (IS) pp. 492 - 498
Main Authors Yasar, Fatma Gunseli, Ulutagay, Gozde
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2016
Subjects
Online AccessGet full text
DOI10.1109/IS.2016.7737466

Cover

Abstract Clustering is an interdisciplinary-studied subject of statistical data analysis. In this study, among various types of clustering algorithms, the algorithms derived from Density Based Spatial Clustering of Applications with Noise (DBSCAN) are investigated. Although DBSCAN is the well-known density-based algorithms it has some bottlenecks. So, enhanced versions of DBSCAN are developed to provide some solutions and to ameliorate the algorithm. In this study, we provide a compact source of DBSCAN-based algorithms for the mentioned challenges.
AbstractList Clustering is an interdisciplinary-studied subject of statistical data analysis. In this study, among various types of clustering algorithms, the algorithms derived from Density Based Spatial Clustering of Applications with Noise (DBSCAN) are investigated. Although DBSCAN is the well-known density-based algorithms it has some bottlenecks. So, enhanced versions of DBSCAN are developed to provide some solutions and to ameliorate the algorithm. In this study, we provide a compact source of DBSCAN-based algorithms for the mentioned challenges.
Author Ulutagay, Gozde
Yasar, Fatma Gunseli
Author_xml – sequence: 1
  givenname: Fatma Gunseli
  surname: Yasar
  fullname: Yasar, Fatma Gunseli
  email: fatma.gunseli.yasar@gmail.com
  organization: Dept. of Comput. Eng., Katip Celebi Univ., Izmir, Turkey
– sequence: 2
  givenname: Gozde
  surname: Ulutagay
  fullname: Ulutagay, Gozde
  email: gozde.ulutagay@izmir.edu.tr
  organization: Dept. of Ind. Eng., Izmir Univ., Izmir, Turkey
BookMark eNotz71OwzAUQGEjwQClMwOLXyDhXv_E8cCAIqCVKjHQvbqJb4ol41RxOvTtGeh0tk86D-I2T5mFeEKoEcG_bL9rBdjUzmlnmuZGrL1r0YIH1Na09-K1-6GUOB-5SMpBnqZSYp9YlimdlzjlIpdJBs4lLhfZU-Egh3QuC88xHx_F3Uip8Praldh_vO-7TbX7-tx2b7sqelgq0_fsafAWWmet0-PAGlywKqjBjqFV1pNHy6Q5GN8imbEnB4CodAAKeiWe_9nIzIfTHH9pvhyuT_oPl7pFfg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IS.2016.7737466
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509013548
1509013547
EndPage 498
ExternalDocumentID 7737466
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-4bbe9ac950875573fce307d52d2c5fd8259a915ea3ed4981a4fba7001123d0ad3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:26:37 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-4bbe9ac950875573fce307d52d2c5fd8259a915ea3ed4981a4fba7001123d0ad3
PageCount 7
ParticipantIDs ieee_primary_7737466
PublicationCentury 2000
PublicationDate 2016-Sept.
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-Sept.
PublicationDecade 2010
PublicationTitle 2016 IEEE 8th International Conference on Intelligent Systems (IS)
PublicationTitleAbbrev IS
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6169468
Snippet Clustering is an interdisciplinary-studied subject of statistical data analysis. In this study, among various types of clustering algorithms, the algorithms...
SourceID ieee
SourceType Publisher
StartPage 492
SubjectTerms Active-DBSCAN
Algorithm design and analysis
Approximation algorithms
Classification algorithms
clustering
Clustering algorithms
DBSCAN
DBSCAN-GM
density based clustering
DMDBSCAN
EDBSCAN
Fast-DBSCAN
FN-DBSCAN
LDBSCAN
Partitioning algorithms
Parzen-Window
Robustness
Soft DBSCAN
Time complexity
VDBSCAN
Title Challenges and possible solutions to density based clustering
URI https://ieeexplore.ieee.org/document/7737466
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH9sO3lS2cRvcvBou65NmuYsjilMBCfsNvLxCuJoh7aH-deb19aJ4sFbCCHf4Zfk_d77AVxZ9HchqXVgGzOjzRISco-C2GDOIy3yLCFv5PlDOnvm90ux7MH1zhcGERvyGYaUbGz5rrQ1fZWNpUwkT9M-9KVUra9WF61nEqnx3RMxtdKwK_VDLqVBi-k-zL_aaUkir2FdmdB-_ArB-N-OHMDo2y-PPe4Q5xB6WAyBLPOtHso704Vjm5K2-RrZblexqmSOiOrVlhFqOWbXNQVI8JWMYDG9XdzMgk4UIXhRURVwY1BpS9qtUgiZ5Bb9KXUidrEVufPvPaXVRKBO0HGVTTTPjSbbskcoF2mXHMGgKAs8BuaBWXIhnJVK8zgX2uXK-EL-gpBpzNQJDGnkq00b9mLVDfr07-wz2KPZb-lX5zCo3mq88HhdmctmoT4Bu5OYnQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_MedCTyiZ-m4NH23Vt0jRncWy6DsEJu418vII42qHtQf96k7ZOFA_eQgj54CX8krzfez-AK432LsSl9HTtZtRJ5ITcAy9UmNFAsiyJXDRyOovHT_RuwRYduN7EwiBiTT5D3xVrX74pdOW-ygacR5zG8RZsM_uq4E20VpuvZxiIweTRcbViv233QzClxovRHqRfIzU0kRe_KpWvP34lYfzvVPah_x2ZRx42mHMAHcx74HzzjSLKG5G5IevCbfQVks2-ImVBjKOql-_E4ZYhelW5FAm2kz7MR7fzm7HXyiJ4zyIoPaoUCqmdeitnjEeZRntODQtNqFlm7ItPSDFkKCM0VCRDSTMlnXfZYpQJpIkOoZsXOR4BsdDMKWNGcyFpmDFpMqFsI3tFSCQm4hh6buXLdZP4Ytku-uTv6kvYGc_T6XI6md2fwq6zREPGOoNu-VrhuUXvUl3URvsE8ISb7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+8th+International+Conference+on+Intelligent+Systems+%28IS%29&rft.atitle=Challenges+and+possible+solutions+to+density+based+clustering&rft.au=Yasar%2C+Fatma+Gunseli&rft.au=Ulutagay%2C+Gozde&rft.date=2016-09-01&rft.pub=IEEE&rft.spage=492&rft.epage=498&rft_id=info:doi/10.1109%2FIS.2016.7737466&rft.externalDocID=7737466