Neural learning algorithm based power quality enhancement for three phase three wire distribution system utilizing shunt active power filter strategy
This paper explores the application of artificial intelligence on solving the power quality problems by using the shunt active power filter strategy for three phase three wire distribution system. The unit vector template generation control technique is modeled as current controller for the shunt ac...
Saved in:
| Published in | 2011 International Conference on Power and Energy Systems pp. 1 - 6 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.12.2011
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/ICPES.2011.6156667 |
Cover
| Abstract | This paper explores the application of artificial intelligence on solving the power quality problems by using the shunt active power filter strategy for three phase three wire distribution system. The unit vector template generation control technique is modeled as current controller for the shunt active power filter strategy. The proportional and integral (PI) controller is designed to minimize error between the actual and the reference DC voltage of shunt active power filter strategy. The transient period and peak overshoot of DC bus voltage using a PI controller is observed to be higher in initial and load change conditions. The artificial neural network is a powerful tool used to generate the current signal with very low oscillation and faster settling time. In this paper, a new neural learning algorithm (NAL) is proposed for the current controller of the shunt active power filter strategy. The performance of the proposed neural learning algorithm is extensively analyzed of diode rectifier RL non linear load with respect to two different operating conditions. The proposed system is designed with MATLAB/Simulink environment. |
|---|---|
| AbstractList | This paper explores the application of artificial intelligence on solving the power quality problems by using the shunt active power filter strategy for three phase three wire distribution system. The unit vector template generation control technique is modeled as current controller for the shunt active power filter strategy. The proportional and integral (PI) controller is designed to minimize error between the actual and the reference DC voltage of shunt active power filter strategy. The transient period and peak overshoot of DC bus voltage using a PI controller is observed to be higher in initial and load change conditions. The artificial neural network is a powerful tool used to generate the current signal with very low oscillation and faster settling time. In this paper, a new neural learning algorithm (NAL) is proposed for the current controller of the shunt active power filter strategy. The performance of the proposed neural learning algorithm is extensively analyzed of diode rectifier RL non linear load with respect to two different operating conditions. The proposed system is designed with MATLAB/Simulink environment. |
| Author | Raj, P. A. Kumar, A. S. |
| Author_xml | – sequence: 1 givenname: A. S. surname: Kumar fullname: Kumar, A. S. email: senthil.pec14@pec.edu organization: Dept. of Electr. & Electron. Eng, Pondicherry Eng. Coll., Puducherry, India – sequence: 2 givenname: P. A. surname: Raj fullname: Raj, P. A. email: ajayvimal@pec.edu organization: Dept. of Electr. & Electron. Eng, Pondicherry Eng. Coll., Puducherry, India |
| BookMark | eNotUN1KwzAYjaCgm3sBvckLbOZb06S9lDHdYKjg7kfSflkjbTqT1FHfw_e1Yq_OOXB-4EzIpWsdEnIHbAHA8oft6m39vlgygIWAVAghL8gEeColpCxn12QWwgdjDKQQSQo35OcFO69qWqPyzrojVfWx9TZWDdUqYElP7Rk9_exUbWNP0VXKFdigi9S0nsbKI9JTNVhHfrYeaWlD9FZ30baOhj5EbOggavv9NxGqboirItovHPuNreMAQ0pFPPa35MqoOuBsxCnZP633q8189_q8XT3u5jZncc5lgrxgmotiqXLGhU6hyAzyhJdZBiWTWEKisyIVPNVKSJ1lheHGYKIMB55Myf1_rUXEw8nbRvn-MB6X_AJWmmtC |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICPES.2011.6156667 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1457715090 9781457715099 9781457715105 1457715104 |
| EndPage | 6 |
| ExternalDocumentID | 6156667 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-i90t-473e4c0b46c2a9046b51c8fe434d881d07ed13b8c5645ba67b88cf4ffe3af4143 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:38:08 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-473e4c0b46c2a9046b51c8fe434d881d07ed13b8c5645ba67b88cf4ffe3af4143 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_6156667 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-Dec. |
| PublicationDateYYYYMMDD | 2011-12-01 |
| PublicationDate_xml | – month: 12 year: 2011 text: 2011-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | 2011 International Conference on Power and Energy Systems |
| PublicationTitleAbbrev | ICPES |
| PublicationYear | 2011 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001766351 |
| Score | 1.5168296 |
| Snippet | This paper explores the application of artificial intelligence on solving the power quality problems by using the shunt active power filter strategy for three... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Active filters Harmonic analysis Joining processes Neural Learning Algorithm Power Factor Power harmonic filters Power quality Reactive power Real Power Total Harmonic Distortion True Power Voltage control |
| Title | Neural learning algorithm based power quality enhancement for three phase three wire distribution system utilizing shunt active power filter strategy |
| URI | https://ieeexplore.ieee.org/document/6156667 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb8IwDI2A007bBNO-lcOOK7Q0TdMzArFJm5DGJG4obh1ajQGC9gD_Y_93SVpAm3bYLa3qOoqr-sWxnwl5gEBGAEw5URKhwwRnDjAODu8qiZ4CX0jL9vnKh-_seRJMauTxUAuDiDb5DNtmaM_yk2VcmFBZh5vNBg_rpB4KXtZqHeMpofGd3r4uxo06T71R_60k6awEf3RQsQ5kcEpe9qrLvJGPdpFDO979YmX879zOSOtYqkdHByd0Tmq4aJIvQ7kh57RqCTGjcj5brrM8_aTGayV0ZXqj0bKgcktxkRrbGwVUY1iaa_siXaX60WpsCI1pYjh2q_ZYtGSApvpinu2Mik1aaHFpf5_V-1VmjuLppiTA3bbIeNAf94ZO1X_BySI3d1joI4tdbbq4KyO9j4bAi4VC5rNEaJjrhph4PojYENKA5CEIESumFPpSMY3DLkhjsVzgJaFCcaWhqGShFEwhiAQCAUbMB6YxyhVpmhWdrkqGjWm1mNd_374hJzaya5NKbkkjXxd4p6FBDvf2m_gG9E-_oA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRwcbeuu5MIKBASMSEG2m3lhFxENgO8H_4_9p2A6Lx4K1b9vaavmXv6-t730PoiXss4BykFUSBsIASsDgQbpGGZMKR3KXMsH0OSOcdXsbeuISe97UwQgiTfCZqemjO8qNFmOlQWZ3ozQbxj9CxBwBeXq11iKj42ns6u8oYO6h3m8PWW07TWYj-6KFiXEj7DPV3yvPMkY9alvJauP3Fy_jf2Z2j6qFYDw_3bugClURSQV-adIPNcdEUYorZfLpYzdL4E2u_FeGl7o6G85LKDRZJrK2vFWCFYnGqLCzwMlaPFmNNaYwjzbJbNMjCOQc0Vhfz2VarWMeZEmfmB1q8X870YTxe5xS4myoatVujZscqOjBYs8BOLfBdAaGtjBc2WKB20txzQioFuBBRBXRtX0SOy2moKWk4Iz6nNJQgpXCZBIXELlE5WSTiCmEqiVRglIHPKEjBacQ9yrWYy0GhlGtU0Ss6WeYcG5NiMW_-vv2ITjqjfm_S6w5eb9GpifOaFJM7VE5XmbhXQCHlD-b7-AYhXcLt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+International+Conference+on+Power+and+Energy+Systems&rft.atitle=Neural+learning+algorithm+based+power+quality+enhancement+for+three+phase+three+wire+distribution+system+utilizing+shunt+active+power+filter+strategy&rft.au=Kumar%2C+A.+S.&rft.au=Raj%2C+P.+A.&rft.date=2011-12-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICPES.2011.6156667&rft.externalDocID=6156667 |