Neural learning algorithm based power quality enhancement for three phase three wire distribution system utilizing shunt active power filter strategy

This paper explores the application of artificial intelligence on solving the power quality problems by using the shunt active power filter strategy for three phase three wire distribution system. The unit vector template generation control technique is modeled as current controller for the shunt ac...

Full description

Saved in:
Bibliographic Details
Published in2011 International Conference on Power and Energy Systems pp. 1 - 6
Main Authors Kumar, A. S., Raj, P. A.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2011
Subjects
Online AccessGet full text
DOI10.1109/ICPES.2011.6156667

Cover

Abstract This paper explores the application of artificial intelligence on solving the power quality problems by using the shunt active power filter strategy for three phase three wire distribution system. The unit vector template generation control technique is modeled as current controller for the shunt active power filter strategy. The proportional and integral (PI) controller is designed to minimize error between the actual and the reference DC voltage of shunt active power filter strategy. The transient period and peak overshoot of DC bus voltage using a PI controller is observed to be higher in initial and load change conditions. The artificial neural network is a powerful tool used to generate the current signal with very low oscillation and faster settling time. In this paper, a new neural learning algorithm (NAL) is proposed for the current controller of the shunt active power filter strategy. The performance of the proposed neural learning algorithm is extensively analyzed of diode rectifier RL non linear load with respect to two different operating conditions. The proposed system is designed with MATLAB/Simulink environment.
AbstractList This paper explores the application of artificial intelligence on solving the power quality problems by using the shunt active power filter strategy for three phase three wire distribution system. The unit vector template generation control technique is modeled as current controller for the shunt active power filter strategy. The proportional and integral (PI) controller is designed to minimize error between the actual and the reference DC voltage of shunt active power filter strategy. The transient period and peak overshoot of DC bus voltage using a PI controller is observed to be higher in initial and load change conditions. The artificial neural network is a powerful tool used to generate the current signal with very low oscillation and faster settling time. In this paper, a new neural learning algorithm (NAL) is proposed for the current controller of the shunt active power filter strategy. The performance of the proposed neural learning algorithm is extensively analyzed of diode rectifier RL non linear load with respect to two different operating conditions. The proposed system is designed with MATLAB/Simulink environment.
Author Raj, P. A.
Kumar, A. S.
Author_xml – sequence: 1
  givenname: A. S.
  surname: Kumar
  fullname: Kumar, A. S.
  email: senthil.pec14@pec.edu
  organization: Dept. of Electr. & Electron. Eng, Pondicherry Eng. Coll., Puducherry, India
– sequence: 2
  givenname: P. A.
  surname: Raj
  fullname: Raj, P. A.
  email: ajayvimal@pec.edu
  organization: Dept. of Electr. & Electron. Eng, Pondicherry Eng. Coll., Puducherry, India
BookMark eNotUN1KwzAYjaCgm3sBvckLbOZb06S9lDHdYKjg7kfSflkjbTqT1FHfw_e1Yq_OOXB-4EzIpWsdEnIHbAHA8oft6m39vlgygIWAVAghL8gEeColpCxn12QWwgdjDKQQSQo35OcFO69qWqPyzrojVfWx9TZWDdUqYElP7Rk9_exUbWNP0VXKFdigi9S0nsbKI9JTNVhHfrYeaWlD9FZ30baOhj5EbOggavv9NxGqboirItovHPuNreMAQ0pFPPa35MqoOuBsxCnZP633q8189_q8XT3u5jZncc5lgrxgmotiqXLGhU6hyAzyhJdZBiWTWEKisyIVPNVKSJ1lheHGYKIMB55Myf1_rUXEw8nbRvn-MB6X_AJWmmtC
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPES.2011.6156667
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1457715090
9781457715099
9781457715105
1457715104
EndPage 6
ExternalDocumentID 6156667
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-473e4c0b46c2a9046b51c8fe434d881d07ed13b8c5645ba67b88cf4ffe3af4143
IEDL.DBID RIE
IngestDate Wed Aug 27 02:38:08 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-473e4c0b46c2a9046b51c8fe434d881d07ed13b8c5645ba67b88cf4ffe3af4143
PageCount 6
ParticipantIDs ieee_primary_6156667
PublicationCentury 2000
PublicationDate 2011-Dec.
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-Dec.
PublicationDecade 2010
PublicationTitle 2011 International Conference on Power and Energy Systems
PublicationTitleAbbrev ICPES
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001766351
Score 1.5168296
Snippet This paper explores the application of artificial intelligence on solving the power quality problems by using the shunt active power filter strategy for three...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Active filters
Harmonic analysis
Joining processes
Neural Learning Algorithm
Power Factor
Power harmonic filters
Power quality
Reactive power
Real Power
Total Harmonic Distortion
True Power
Voltage control
Title Neural learning algorithm based power quality enhancement for three phase three wire distribution system utilizing shunt active power filter strategy
URI https://ieeexplore.ieee.org/document/6156667
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb8IwDI2A007bBNO-lcOOK7Q0TdMzArFJm5DGJG4obh1ajQGC9gD_Y_93SVpAm3bYLa3qOoqr-sWxnwl5gEBGAEw5URKhwwRnDjAODu8qiZ4CX0jL9vnKh-_seRJMauTxUAuDiDb5DNtmaM_yk2VcmFBZh5vNBg_rpB4KXtZqHeMpofGd3r4uxo06T71R_60k6awEf3RQsQ5kcEpe9qrLvJGPdpFDO979YmX879zOSOtYqkdHByd0Tmq4aJIvQ7kh57RqCTGjcj5brrM8_aTGayV0ZXqj0bKgcktxkRrbGwVUY1iaa_siXaX60WpsCI1pYjh2q_ZYtGSApvpinu2Mik1aaHFpf5_V-1VmjuLppiTA3bbIeNAf94ZO1X_BySI3d1joI4tdbbq4KyO9j4bAi4VC5rNEaJjrhph4PojYENKA5CEIESumFPpSMY3DLkhjsVzgJaFCcaWhqGShFEwhiAQCAUbMB6YxyhVpmhWdrkqGjWm1mNd_374hJzaya5NKbkkjXxd4p6FBDvf2m_gG9E-_oA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRwcbeuu5MIKBASMSEG2m3lhFxENgO8H_4_9p2A6Lx4K1b9vaavmXv6-t730PoiXss4BykFUSBsIASsDgQbpGGZMKR3KXMsH0OSOcdXsbeuISe97UwQgiTfCZqemjO8qNFmOlQWZ3ozQbxj9CxBwBeXq11iKj42ns6u8oYO6h3m8PWW07TWYj-6KFiXEj7DPV3yvPMkY9alvJauP3Fy_jf2Z2j6qFYDw_3bugClURSQV-adIPNcdEUYorZfLpYzdL4E2u_FeGl7o6G85LKDRZJrK2vFWCFYnGqLCzwMlaPFmNNaYwjzbJbNMjCOQc0Vhfz2VarWMeZEmfmB1q8X870YTxe5xS4myoatVujZscqOjBYs8BOLfBdAaGtjBc2WKB20txzQioFuBBRBXRtX0SOy2moKWk4Iz6nNJQgpXCZBIXELlE5WSTiCmEqiVRglIHPKEjBacQ9yrWYy0GhlGtU0Ss6WeYcG5NiMW_-vv2ITjqjfm_S6w5eb9GpifOaFJM7VE5XmbhXQCHlD-b7-AYhXcLt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+International+Conference+on+Power+and+Energy+Systems&rft.atitle=Neural+learning+algorithm+based+power+quality+enhancement+for+three+phase+three+wire+distribution+system+utilizing+shunt+active+power+filter+strategy&rft.au=Kumar%2C+A.+S.&rft.au=Raj%2C+P.+A.&rft.date=2011-12-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICPES.2011.6156667&rft.externalDocID=6156667