Normalized Adaptive Random Test for Integration Tests

The Adaptive Random Testing (ART) was devised to improve the performance of pure random tests, which is one of black-box testing strategies. The ART-based algorithms were developed mainly for unit or single module tests. When a given unit-under-test (UUT) is integrated with an already proven front-e...

Full description

Saved in:
Bibliographic Details
Published in2010 IEEE 34th Annual Computer Software and Applications Conference Workshops pp. 335 - 340
Main Authors Shin, Seung-Hun, Park, Seung-Kyu, Choi, Kyung-Hee, Jung, Ki-Hyun
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2010
Subjects
Online AccessGet full text
ISBN1424480892
9781424480890
DOI10.1109/COMPSACW.2010.65

Cover

Abstract The Adaptive Random Testing (ART) was devised to improve the performance of pure random tests, which is one of black-box testing strategies. The ART-based algorithms were developed mainly for unit or single module tests. When a given unit-under-test (UUT) is integrated with an already proven front-end software module which takes inputs and supplies the outputs to the UUT, the performance of ART-based algorithm applied to the integrated software is severely degraded depending on the behavior of front-end software. In this paper, a normalized ART-based algorithm is proposed for the integration and regression tests where an UUT is integrated with a front-end software module. The front-end software with three different functions, Log, Exponential, and Normal function, is experimented by the simulation to show the performance of the proposed method. Depending on the skewness driven by the function of front-end, the experimental results show that the proposed method outperforms significantly the ART without normalization in terms of F-measure.
AbstractList The Adaptive Random Testing (ART) was devised to improve the performance of pure random tests, which is one of black-box testing strategies. The ART-based algorithms were developed mainly for unit or single module tests. When a given unit-under-test (UUT) is integrated with an already proven front-end software module which takes inputs and supplies the outputs to the UUT, the performance of ART-based algorithm applied to the integrated software is severely degraded depending on the behavior of front-end software. In this paper, a normalized ART-based algorithm is proposed for the integration and regression tests where an UUT is integrated with a front-end software module. The front-end software with three different functions, Log, Exponential, and Normal function, is experimented by the simulation to show the performance of the proposed method. Depending on the skewness driven by the function of front-end, the experimental results show that the proposed method outperforms significantly the ART without normalization in terms of F-measure.
Author Shin, Seung-Hun
Choi, Kyung-Hee
Jung, Ki-Hyun
Park, Seung-Kyu
Author_xml – sequence: 1
  givenname: Seung-Hun
  surname: Shin
  fullname: Shin, Seung-Hun
  email: shinsh@ajou.ac.kr
  organization: Dept. of Inf. & Commun. Eng., Ajou Univ., Suwon, South Korea
– sequence: 2
  givenname: Seung-Kyu
  surname: Park
  fullname: Park, Seung-Kyu
  email: sparky@ajou.ac.kr
  organization: Coll. of Inf. Technol., Ajou Univ., Suwon, South Korea
– sequence: 3
  givenname: Kyung-Hee
  surname: Choi
  fullname: Choi, Kyung-Hee
  email: khchoi@ajou.ac.kr
  organization: Coll. of Inf. Technol., Ajou Univ., Suwon, South Korea
– sequence: 4
  givenname: Ki-Hyun
  surname: Jung
  fullname: Jung, Ki-Hyun
  email: khchung@ajou.ac.kr
  organization: Coll. of Inf. Technol., Ajou Univ., Suwon, South Korea
BookMark eNotjMFKw0AUAFdU0NbcBS_5gdR9u2-Tt8cQtBaqFQ14LJvdF1lpk5IEQb_eos5lYA4zE2dd37EQ1yAXANLeVpvH59eyelsoeUy5ORGJLUgWuTUI0sCpmAEqRJJk1YVIxvFDHkGjpLSXwjz1w97t4jeHtAzuMMVPTl9cF_p9WvM4pW0_pKtu4vfBTbHvfuN4Jc5btxs5-fdc1Pd3dfWQrTfLVVWus2jllOkWvCu8b0HpwpJWBYLWCGSwICRvWuKcGkTbeCLdWDTasw0cHGoTvJ6Lm79tZObtYYh7N3xtTQ6GFOgfezJHWg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/COMPSACW.2010.65
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9780769541051
0769541054
EndPage 340
ExternalDocumentID 5615821
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-3f1ca7ccf1237983274133418547848c5f8e68b449bc883b9453ce9deda435dc3
IEDL.DBID RIE
ISBN 1424480892
9781424480890
IngestDate Wed Sep 03 07:11:33 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-3f1ca7ccf1237983274133418547848c5f8e68b449bc883b9453ce9deda435dc3
PageCount 6
ParticipantIDs ieee_primary_5615821
PublicationCentury 2000
PublicationDate 2010-July
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-July
PublicationDecade 2010
PublicationTitle 2010 IEEE 34th Annual Computer Software and Applications Conference Workshops
PublicationTitleAbbrev compsacw
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452009
ssib015832236
Score 1.493471
Snippet The Adaptive Random Testing (ART) was devised to improve the performance of pure random tests, which is one of black-box testing strategies. The ART-based...
SourceID ieee
SourceType Publisher
StartPage 335
SubjectTerms Adaptive Random Testing
Closed box
Distortion
Integration Testing
Partitioning algorithms
Random Test
Software
Software algorithms
Software development management
Software measurement
Strips
Subspace constraints
Test case selection
Testing
Title Normalized Adaptive Random Test for Integration Tests
URI https://ieeexplore.ieee.org/document/5615821
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6Akyc1YPxODx4tDNqu7ZEQCZqARDFyI_1aQtRBcFz49fZjQ2M8eNu6ZNm7Nn2e9H2f5wXgxnBKDLUMZUxLREiCkcp4hqSkNk05zXrhTHc8SUcv5GFO5zVwu9fCWGtD8Zlt-8uQyzcrvfVHZR2H9V7XWQd1xtOo1arWjnvglmbs3R13YRIMhSotF0-46FUWT-V9UqUtE9EZPI6nz_3Bayz28lDzo9lKwJrhIRhXXxlLTN7a20K19e6XgeN_wzgCrW9VH5zu8eoY1GzeBHTiSev7cmcN7Bu59rsffJK5WX3AmUMM6EgtvC89JdwchsHPFpgN72aDESpbKaClSAqEs66WTOvM4RQT7k85HoGx960hjBOuacZtyhUhQmnOsRKEYm2FsUY6OmU0PgGNfJXbUwCp7gquhWNuUhDLeopIIqXoGv8-RsUZaPqIF-tolrEogz3_e_gCHMR0vK9_vQSNYrO1Vw7lC3UdpvcLNlCgUg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5RPOhJDRh_u4NHB4O9ru2REAkoQ6IzciNd2yVEHUTHhb_edj_QGA_eti5Z9tam35e-930P4Foxgopo6iZUChfR8904YYkrBNFBwEjSyc90w3EweMa7KZluwc1GC6O1zovPdNNe5rl8tZAre1TWMlhvdZ3bsEMQkRRqrWr1mEdmcRbdu4t9GHNLoUrNxTzGO5XJU3nvVYlLj7d6D-Hkqdt7Kcq9LNj8aLeSo01_H8LqO4sik9fmKoubcv3LwvG_gRxA41vX50w2iHUIWzqtAxlb2vo2X2vldJVY2v3PeRSpWrw7kcEMx9BaZ1i6SphZzAc_GxD1b6PewC2bKbhz7mWun7SloFImBqkoN3_KMAnft841SBkySRKmAxYj8lgy5scciS81V1oJQ6iU9I-gli5SfQwOkW3OJDfcTXDUtBOjQCF4W9n3UcJPoG4jni0Lu4xZGezp38NXsDuIwtFsNBzfn8FekZy31bDnUMs-VvrCYH4WX-ZT_QXWHqOf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+34th+Annual+Computer+Software+and+Applications+Conference+Workshops&rft.atitle=Normalized+Adaptive+Random+Test+for+Integration+Tests&rft.au=Shin%2C+Seung-Hun&rft.au=Park%2C+Seung-Kyu&rft.au=Choi%2C+Kyung-Hee&rft.au=Jung%2C+Ki-Hyun&rft.date=2010-07-01&rft.pub=IEEE&rft.isbn=9781424480890&rft.spage=335&rft.epage=340&rft_id=info:doi/10.1109%2FCOMPSACW.2010.65&rft.externalDocID=5615821
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424480890/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424480890/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424480890/sc.gif&client=summon&freeimage=true