Network Traffic Classification Based on Message Statistics

Accurate and efficient network traffic classification is an important network management task. Two way messages in a session follow the underlying application protocol to exchange information. In this paper, we propose a novel application classification method based on message statistics, concisely...

Full description

Saved in:
Bibliographic Details
Published in2008 4th International Conference on Wireless Communications, Networking and Mobile Computing pp. 1 - 4
Main Authors Gang Shen, Lian Fan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2008
Subjects
Online AccessGet full text
ISBN9781424421077
1424421071
ISSN2161-9646
DOI10.1109/WiCom.2008.1046

Cover

Abstract Accurate and efficient network traffic classification is an important network management task. Two way messages in a session follow the underlying application protocol to exchange information. In this paper, we propose a novel application classification method based on message statistics, concisely representing the protocols' unique characteristics. We present algorithms using SVD-based and information gain based algorithms to select the proper message feature set. As shown by the evaluation experiments, using the selected message features, a simple decision tree is able to reach the classification accuracy over 99%, which is comparable to other more sophisticated machine learning results.
AbstractList Accurate and efficient network traffic classification is an important network management task. Two way messages in a session follow the underlying application protocol to exchange information. In this paper, we propose a novel application classification method based on message statistics, concisely representing the protocols' unique characteristics. We present algorithms using SVD-based and information gain based algorithms to select the proper message feature set. As shown by the evaluation experiments, using the selected message features, a simple decision tree is able to reach the classification accuracy over 99%, which is comparable to other more sophisticated machine learning results.
Author Gang Shen
Lian Fan
Author_xml – sequence: 1
  surname: Gang Shen
  fullname: Gang Shen
  organization: Sch. of Software Eng., Huazhong Univ. of Sci. & Technol., Wuhan
– sequence: 2
  surname: Lian Fan
  fullname: Lian Fan
  organization: Sch. of Software Eng., Huazhong Univ. of Sci. & Technol., Wuhan
BookMark eNo1js1OwzAQhI1oJZqSMwcueYGEtb3x2twg4k8qcCAS3Co7tZGhbVAcCfH2BAFzmW802tVkbLbv956xEw4V52DOnmPT7yoBoCsOqA5YxlEgCg765ZDlhvR_JpqxheCKl0ahmrPs58gAKJJHLE_pDSZhLbWmBTt_8ONnP7wX7WBDiF3RbG1KcSI7xn5fXNrkN8UE9z4l--qLp3Eq0hi7dMzmwW6Tz_98ydrrq7a5LVePN3fNxaqMBsZSenRq40HWPKADFUBPS3xHxghDnSQ-ATotQDpBJBFr5aAjZ6SjIGq5ZKe_b6P3fv0xxJ0dvtaoSJsa5TenyUx0
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WiCom.2008.1046
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISBN 142442108X
9781424421084
EndPage 4
ExternalDocumentID 4678954
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-3e4b6de0351f4b06f08067ec799297c3719924b8203b27734456b0c7b93b7f253
IEDL.DBID RIE
ISBN 9781424421077
1424421071
ISSN 2161-9646
IngestDate Wed Aug 27 02:11:22 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008900673
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-3e4b6de0351f4b06f08067ec799297c3719924b8203b27734456b0c7b93b7f253
PageCount 4
ParticipantIDs ieee_primary_4678954
PublicationCentury 2000
PublicationDate 2008-Oct.
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-Oct.
PublicationDecade 2000
PublicationTitle 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing
PublicationTitleAbbrev WiCom
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453887
ssj0003177788
Score 1.4140704
Snippet Accurate and efficient network traffic classification is an important network management task. Two way messages in a session follow the underlying application...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Application software
Classification tree analysis
Decision trees
Engineering management
Machine learning algorithms
Payloads
Protocols
Software engineering
Statistics
Telecommunication traffic
Title Network Traffic Classification Based on Message Statistics
URI https://ieeexplore.ieee.org/document/4678954
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VTmUB2iK-lYERt07s2DEjiKpCasVQRLcqTi6oQmoRShd-PWcnaQExsNmRIiV2Tu_F9-4dwDUhnk1FbphIKchlFoXMouDMaldJyYsstd7tc6rGz_JxHs9bcLOthUFELz7DgRv6XH6-zjbuqGxIQZ2YWO7Bnk5UVau1PU8haiIaquHmhIta-7aTEZEaZpRUTV0X_eXosLF7que6tv0JuRm-LCkWK5mly4D-6LviYWd0AJPmgSu1ydtgU9pB9vnLy_G_b3QI_V2BX_C0ha4jaOGqC_vfvAm70HE0tHJx7sHttFKLBwRtznMi8L00ncrIb2xwR1iYBzSYuI4qrxjsbu7DbPQwux-zuusCWxpeMoHSqhxdgrGQlquCKKXSmGlDREpnQju9qrREHISNtBaSGJjlmbZGWF1EsTiG9mq9whMIVKotJjZJw5xLlIUhXCDCE6Ui5TGG5hR6bkUW75WvxqJejLO_L59DJ2q8aMMLaJcfG7wkQlDaK_8lfAF6Bqxo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMgAL0BbxTQZG0jqxY9eMIKoCbcVQRLcqTi6oQmoRShd-PWcnaQExsNmRIiV2Tu_F9-4dwCUhnol5qn0eU5CLJAx8g5z5RtlKSpYlsXFunyPZfxYPk2hSg6tVLQwiOvEZtu3Q5fLTRbK0R2UdCuqujsQGbEZCiKio1lqdqBA54RXZsHNCRqVc48mQaI2vpZBVZRf956igMnwq56o0_gmY7rzMKBoLoaXNgf7ovOKAp7cLw-qRC73JW3uZm3by-cvN8b_vtAetdYmf97QCr32o4bwBO9_cCRuwbYlo4ePchOtRoRf3CNys64TnumlanZHbWu-G0DD1aDC0PVVe0Vvf3IJx72582_fLvgv-TLPc5yiMTNGmGDNhmMyIVEqFidJEpVTClVWsCkPUgZtQKU47IQ1LlNHcqCyM-AHU54s5HoInY2Wwa7pxkDKBItOEDER5wpjHLMJAH0HTrsj0vXDWmJaLcfz35QvY6o-Hg-ngfvR4Atth5UwbnEI9_1jiGdGD3Jy7r-ILuuqvtQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+4th+International+Conference+on+Wireless+Communications%2C+Networking+and+Mobile+Computing&rft.atitle=Network+Traffic+Classification+Based+on+Message+Statistics&rft.au=Gang+Shen&rft.au=Lian+Fan&rft.date=2008-10-01&rft.pub=IEEE&rft.isbn=9781424421077&rft.issn=2161-9646&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FWiCom.2008.1046&rft.externalDocID=4678954
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-9646&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-9646&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-9646&client=summon