Network Traffic Classification Based on Message Statistics
Accurate and efficient network traffic classification is an important network management task. Two way messages in a session follow the underlying application protocol to exchange information. In this paper, we propose a novel application classification method based on message statistics, concisely...
Saved in:
| Published in | 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing pp. 1 - 4 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.10.2008
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 9781424421077 1424421071 |
| ISSN | 2161-9646 |
| DOI | 10.1109/WiCom.2008.1046 |
Cover
| Abstract | Accurate and efficient network traffic classification is an important network management task. Two way messages in a session follow the underlying application protocol to exchange information. In this paper, we propose a novel application classification method based on message statistics, concisely representing the protocols' unique characteristics. We present algorithms using SVD-based and information gain based algorithms to select the proper message feature set. As shown by the evaluation experiments, using the selected message features, a simple decision tree is able to reach the classification accuracy over 99%, which is comparable to other more sophisticated machine learning results. |
|---|---|
| AbstractList | Accurate and efficient network traffic classification is an important network management task. Two way messages in a session follow the underlying application protocol to exchange information. In this paper, we propose a novel application classification method based on message statistics, concisely representing the protocols' unique characteristics. We present algorithms using SVD-based and information gain based algorithms to select the proper message feature set. As shown by the evaluation experiments, using the selected message features, a simple decision tree is able to reach the classification accuracy over 99%, which is comparable to other more sophisticated machine learning results. |
| Author | Gang Shen Lian Fan |
| Author_xml | – sequence: 1 surname: Gang Shen fullname: Gang Shen organization: Sch. of Software Eng., Huazhong Univ. of Sci. & Technol., Wuhan – sequence: 2 surname: Lian Fan fullname: Lian Fan organization: Sch. of Software Eng., Huazhong Univ. of Sci. & Technol., Wuhan |
| BookMark | eNo1js1OwzAQhI1oJZqSMwcueYGEtb3x2twg4k8qcCAS3Co7tZGhbVAcCfH2BAFzmW802tVkbLbv956xEw4V52DOnmPT7yoBoCsOqA5YxlEgCg765ZDlhvR_JpqxheCKl0ahmrPs58gAKJJHLE_pDSZhLbWmBTt_8ONnP7wX7WBDiF3RbG1KcSI7xn5fXNrkN8UE9z4l--qLp3Eq0hi7dMzmwW6Tz_98ydrrq7a5LVePN3fNxaqMBsZSenRq40HWPKADFUBPS3xHxghDnSQ-ATotQDpBJBFr5aAjZ6SjIGq5ZKe_b6P3fv0xxJ0dvtaoSJsa5TenyUx0 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/WiCom.2008.1046 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics |
| EISBN | 142442108X 9781424421084 |
| EndPage | 4 |
| ExternalDocumentID | 4678954 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i90t-3e4b6de0351f4b06f08067ec799297c3719924b8203b27734456b0c7b93b7f253 |
| IEDL.DBID | RIE |
| ISBN | 9781424421077 1424421071 |
| ISSN | 2161-9646 |
| IngestDate | Wed Aug 27 02:11:22 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCN | 2008900673 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-3e4b6de0351f4b06f08067ec799297c3719924b8203b27734456b0c7b93b7f253 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_4678954 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-Oct. |
| PublicationDateYYYYMMDD | 2008-10-01 |
| PublicationDate_xml | – month: 10 year: 2008 text: 2008-Oct. |
| PublicationDecade | 2000 |
| PublicationTitle | 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing |
| PublicationTitleAbbrev | WiCom |
| PublicationYear | 2008 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000453887 ssj0003177788 |
| Score | 1.4140704 |
| Snippet | Accurate and efficient network traffic classification is an important network management task. Two way messages in a session follow the underlying application... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Application software Classification tree analysis Decision trees Engineering management Machine learning algorithms Payloads Protocols Software engineering Statistics Telecommunication traffic |
| Title | Network Traffic Classification Based on Message Statistics |
| URI | https://ieeexplore.ieee.org/document/4678954 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VTmUB2iK-lYERt07s2DEjiKpCasVQRLcqTi6oQmoRShd-PWcnaQExsNmRIiV2Tu_F9-4dwDUhnk1FbphIKchlFoXMouDMaldJyYsstd7tc6rGz_JxHs9bcLOthUFELz7DgRv6XH6-zjbuqGxIQZ2YWO7Bnk5UVau1PU8haiIaquHmhIta-7aTEZEaZpRUTV0X_eXosLF7que6tv0JuRm-LCkWK5mly4D-6LviYWd0AJPmgSu1ydtgU9pB9vnLy_G_b3QI_V2BX_C0ha4jaOGqC_vfvAm70HE0tHJx7sHttFKLBwRtznMi8L00ncrIb2xwR1iYBzSYuI4qrxjsbu7DbPQwux-zuusCWxpeMoHSqhxdgrGQlquCKKXSmGlDREpnQju9qrREHISNtBaSGJjlmbZGWF1EsTiG9mq9whMIVKotJjZJw5xLlIUhXCDCE6Ui5TGG5hR6bkUW75WvxqJejLO_L59DJ2q8aMMLaJcfG7wkQlDaK_8lfAF6Bqxo |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMgAL0BbxTQZG0jqxY9eMIKoCbcVQRLcqTi6oQmoRShd-PWcnaQExsNmRIiV2Tu_F9-4dwCUhnol5qn0eU5CLJAx8g5z5RtlKSpYlsXFunyPZfxYPk2hSg6tVLQwiOvEZtu3Q5fLTRbK0R2UdCuqujsQGbEZCiKio1lqdqBA54RXZsHNCRqVc48mQaI2vpZBVZRf956igMnwq56o0_gmY7rzMKBoLoaXNgf7ovOKAp7cLw-qRC73JW3uZm3by-cvN8b_vtAetdYmf97QCr32o4bwBO9_cCRuwbYlo4ePchOtRoRf3CNys64TnumlanZHbWu-G0DD1aDC0PVVe0Vvf3IJx72582_fLvgv-TLPc5yiMTNGmGDNhmMyIVEqFidJEpVTClVWsCkPUgZtQKU47IQ1LlNHcqCyM-AHU54s5HoInY2Wwa7pxkDKBItOEDER5wpjHLMJAH0HTrsj0vXDWmJaLcfz35QvY6o-Hg-ngfvR4Atth5UwbnEI9_1jiGdGD3Jy7r-ILuuqvtQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+4th+International+Conference+on+Wireless+Communications%2C+Networking+and+Mobile+Computing&rft.atitle=Network+Traffic+Classification+Based+on+Message+Statistics&rft.au=Gang+Shen&rft.au=Lian+Fan&rft.date=2008-10-01&rft.pub=IEEE&rft.isbn=9781424421077&rft.issn=2161-9646&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FWiCom.2008.1046&rft.externalDocID=4678954 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-9646&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-9646&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-9646&client=summon |