Astroturfing Detection in Social Media: Using Binary n-Gram Analysis for Authorship Attribution

Astroturfing is appearing in numerous contexts in social media, with individuals posting product reviews or political commentary under a number of different names, and is of concern because of the intended deception. An astroturfer works with the aim of making it seem that a large number of people h...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Trustcom/BigDataSE/ISPA pp. 121 - 128
Main Authors Jian Peng, Kim-Kwang Choo, Raymond, Ashman, Helen
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2016
Subjects
Online AccessGet full text
ISSN2324-9013
DOI10.1109/TrustCom.2016.0054

Cover

Abstract Astroturfing is appearing in numerous contexts in social media, with individuals posting product reviews or political commentary under a number of different names, and is of concern because of the intended deception. An astroturfer works with the aim of making it seem that a large number of people hold the same opinion, promoting a consensus based on the astroturfer's intentions. It is generally done for commercial or political advantage, often by paid writers or ideologically-motivated writers. This paper brings the notion of authorship attribution to bear on the astroturfing problem, collecting quantities of data from public social media sites and analysing the putative individual authors to see if they appear to be the same person. The analysis comprises a binary n-gram method which was previously shown to be effective at accurately identifying authors on a training set from the same authors, while this paper shows how authors on different social media turn out to be the same author.
AbstractList Astroturfing is appearing in numerous contexts in social media, with individuals posting product reviews or political commentary under a number of different names, and is of concern because of the intended deception. An astroturfer works with the aim of making it seem that a large number of people hold the same opinion, promoting a consensus based on the astroturfer's intentions. It is generally done for commercial or political advantage, often by paid writers or ideologically-motivated writers. This paper brings the notion of authorship attribution to bear on the astroturfing problem, collecting quantities of data from public social media sites and analysing the putative individual authors to see if they appear to be the same person. The analysis comprises a binary n-gram method which was previously shown to be effective at accurately identifying authors on a training set from the same authors, while this paper shows how authors on different social media turn out to be the same author.
Author Kim-Kwang Choo, Raymond
Ashman, Helen
Jian Peng
Author_xml – sequence: 1
  surname: Jian Peng
  fullname: Jian Peng
  email: jian.peng@mymail.unisa.edu.au
  organization: Sch. of Inf. Technol. & Math. Sci., Univ. of South Australia, Adelaide, SA, Australia
– sequence: 2
  givenname: Raymond
  surname: Kim-Kwang Choo
  fullname: Kim-Kwang Choo, Raymond
  email: raymond.choo@fulbrightmail.org
  organization: Dept. of Inf. Syst. & Cyber Security, Univ. of Texas at San Antonio, San Antonio, TX, USA
– sequence: 3
  givenname: Helen
  surname: Ashman
  fullname: Ashman, Helen
  email: Helen.Ashman@unisa.edu.au
  organization: Sch. of Inf. Technol. & Math. Sci., Univ. of South Australia, Adelaide, SA, Australia
BookMark eNotj71OwzAURg0CiVL6ArD4BVKu_5KYLRQoSEUMhLlykmtq1NqV7Qx9e1rBdJZPR9-5Jhc-eCTklsGcMdD3bRxTXoTdnAMr5wBKnpGZrmqmQIPgoNg5mXDBZaGBiSsyS-kHADgvtVD1hKyblGPIY7TOf9MnzNhnFzx1nn6G3pktfcfBmQf6lU6DR-dNPFBfLKPZ0cab7SG5RG2ItBnzJsS0cXva5BxdN55EN-TSmm3C2T-npH15bhevxepj-bZoVoXTkAvRdb2ulObMmkEKpTprSxwGBaYqO4liUAMaANlDP_SCCc5RMoFWGlvJGsWU3P1pHSKu99HtjjfXVS2PmZX4BS-QWS4
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/TrustCom.2016.0054
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781509032051
1509032053
EISSN 2324-9013
EndPage 128
ExternalDocumentID 7846937
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-3bbc975921fad4355bff6edd50a76b4e3d5dea004c0cdc31322e413ef4af748e3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:07:35 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-3bbc975921fad4355bff6edd50a76b4e3d5dea004c0cdc31322e413ef4af748e3
PageCount 8
ParticipantIDs ieee_primary_7846937
PublicationCentury 2000
PublicationDate 2016-Aug.
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-Aug.
PublicationDecade 2010
PublicationTitle 2016 IEEE Trustcom/BigDataSE/ISPA
PublicationTitleAbbrev TrustCom
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002269358
ssj0003204185
Score 1.7640616
Snippet Astroturfing is appearing in numerous contexts in social media, with individuals posting product reviews or political commentary under a number of different...
SourceID ieee
SourceType Publisher
StartPage 121
SubjectTerms Astroturfing
Authorship Attribution
Context
Feature extraction
N-gram
Plagiarism
Social network services
Support vector machines
Syntactics
User Profiling
Writing
Title Astroturfing Detection in Social Media: Using Binary n-Gram Analysis for Authorship Attribution
URI https://ieeexplore.ieee.org/document/7846937
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nZgKtIi3PDDiNiTOw2zlUSqkIoYidav8OEsVIkEhXfj12E6TSoiBLYkyOHZO3-nu-74DuAplLGNtFE2yTFEWBUilMZLqQLqqE6I0rt4xf0lmb-x5GS87cN1qYRDRk89w5C59L18XauNKZePUgqWF0y500yyptVptPcWmEa6l195HYeB8WRqdTMDHCydisFHm-FyuA-EnAOwmqnhAmfZh3iyl5pG8jzaVHKnvXy6N_13rPgx30j3y2oLSAXQwP4R-M7uBbEN5AKvJV1UWFm-MfY08YOUpWTlZ56RW7BLXwhG3xHMKyJ2X7ZKcPpXigzROJsRmvMQV2QpPhiaTqp2fNYTF9HFxP6PbYQt0zYOKRlIqnsY8vDFC2xQqtieWoNZxINJEMox0rFHYiFKB0sr5PYZo8Q8NEyZlGUZH0MuLHI-BZEoYIxIuQ2ZYiqnI7CeHIlSMR1zz5AQGbrtWn7Wdxmq7U6d_Pz6DPXdeNefuHHpVucELmwdU8tL_AD-vG7XL
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGDEbUjsPNjKoxRoK4YgdYv8OEsVIkElXfj12E4TJMTAlkQZHDun73T3fd8hdOELJpjSkoRxLAkNPCBCa0GUJ2zVCUBoW--YzsLxK32as3kLXTZaGABw5DPo20vXy1eFXNlS2SAyYGngdANtMkopq9RaTUXFJBK2qdfcB75nnVlqpYyXDFIrYzBxZhldtgfhZgD8zFRxkDLqoGm9mIpJ8tZflaIvv375NP53tTuo9yPewy8NLO2iFuR7qFNPb8DrYO6ibPhZLguDONq8hu-gdKSsHC9yXGl2sW3i8GvsWAX4xgl3cU4elvwd114m2OS82JbZCkeHxsOymaDVQ-noPr0dk_W4BbJIvJIEQsgkYol_pbkySRQzZxaCUszjUSgoBIop4CampCeVtI6PPhgEBE25jmgMwT5q50UOBwjHkmvNw0T4VNMIIh6bT_a5L2kSJCoJD1HXblf2URlqZOudOvr78TnaGqfTSTZ5nD0fo217dhUD7wS1y-UKTk1WUIoz9zN8A18RuRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Trustcom%2FBigDataSE%2FISPA&rft.atitle=Astroturfing+Detection+in+Social+Media%3A+Using+Binary+n-Gram+Analysis+for+Authorship+Attribution&rft.au=Jian+Peng&rft.au=Kim-Kwang+Choo%2C+Raymond&rft.au=Ashman%2C+Helen&rft.date=2016-08-01&rft.pub=IEEE&rft.eissn=2324-9013&rft.spage=121&rft.epage=128&rft_id=info:doi/10.1109%2FTrustCom.2016.0054&rft.externalDocID=7846937