A Novel Principal Component Analysis Flow Pattern Identification Algorithm for Electrical Capacitance Tomography System

To solve the flow pattern identification more difficult problem in electrical capacitance tomography (ECT) technology, a novel principal component analysis flow pattern identification algorithm for neural network is presented. Based on the introduction of the basic principles of feature selection an...

Full description

Saved in:
Bibliographic Details
Published in2010 International Conference on Machine Vision and Human-Machine Interface pp. 235 - 238
Main Authors Chen Yu, Song Yuchen, Zhang Jian
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2010
Subjects
Online AccessGet full text
ISBN9781424465958
1424465958
DOI10.1109/MVHI.2010.141

Cover

Abstract To solve the flow pattern identification more difficult problem in electrical capacitance tomography (ECT) technology, a novel principal component analysis flow pattern identification algorithm for neural network is presented. Based on the introduction of the basic principles of feature selection and feature extraction for principal component analysis, Construction of Symmetric subspace model based on principal component analysis neural network, and the convergence of Symmetric subspace algorithm is analyzed. The feasibility of using this algorithm for ECT is also discussed. Algorithm to meet the convergence conditions and to simplify the complex pre-processing steps, greatly reducing the computational complexity, improve the speed of the identification. Experimental results indicate that the algorithm can obtain a higher recognition rate compared with BP neural network recognition algorithm and this new algorithm presents a feasible and effective way to research on flow pattern identification algorithm of electrical capacitance tomography.
AbstractList To solve the flow pattern identification more difficult problem in electrical capacitance tomography (ECT) technology, a novel principal component analysis flow pattern identification algorithm for neural network is presented. Based on the introduction of the basic principles of feature selection and feature extraction for principal component analysis, Construction of Symmetric subspace model based on principal component analysis neural network, and the convergence of Symmetric subspace algorithm is analyzed. The feasibility of using this algorithm for ECT is also discussed. Algorithm to meet the convergence conditions and to simplify the complex pre-processing steps, greatly reducing the computational complexity, improve the speed of the identification. Experimental results indicate that the algorithm can obtain a higher recognition rate compared with BP neural network recognition algorithm and this new algorithm presents a feasible and effective way to research on flow pattern identification algorithm of electrical capacitance tomography.
Author Song Yuchen
Chen Yu
Zhang Jian
Author_xml – sequence: 1
  surname: Chen Yu
  fullname: Chen Yu
  email: lg_chenyu@yahoo.com.cn
  organization: Inf. & Comput. Eng. Inst., Northeast Forestry Univ., Harbin, China
– sequence: 2
  surname: Song Yuchen
  fullname: Song Yuchen
  organization: Inf. & Comput. Eng. Inst., Northeast Forestry Univ., Harbin, China
– sequence: 3
  surname: Zhang Jian
  fullname: Zhang Jian
  organization: Inf. & Comput. Eng. Inst., Northeast Forestry Univ., Harbin, China
BookMark eNo1jU1PAjEYhGuUREGOnrz0D4Dt9gN63BAQElQSiVfybtuFmt12020k--9Zos5lMnkmM0N054O3CD1RMqWUqJe3r_VmmpFr5PQGDSnPOJdCSXmLxmo2_89iPkDDa09lGSP0Ho3b9pv04iKjij-gc47fw4-t8C46r10DFV6EuunffMK5h6prXYtXVTjjHaRko8cb0zNXOg3JBY_z6hiiS6calyHiZWV1ij3rd6AB7RJ4bfE-1OEYoTl1-LNrk60f0aCEqrXjPx-h_Wq5X6wn24_XzSLfTpwiacJUqUFBQY0ihgLVklggVOiSGGsLKiVVgpiSlQB6pg1TfCY0oUxaY4qCsBF6_p111tpDE10NsTsIwTKhCLsAyd9i7Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MVHI.2010.141
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1424465966
9781424465965
EndPage 238
ExternalDocumentID 5532590
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-39fca9ab1d90d1a1c60ea015cf0deeb1661950df3faac7cd39475c0136eddbb03
IEDL.DBID RIE
ISBN 9781424465958
1424465958
IngestDate Wed Aug 27 02:51:29 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2010922301
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-39fca9ab1d90d1a1c60ea015cf0deeb1661950df3faac7cd39475c0136eddbb03
PageCount 4
ParticipantIDs ieee_primary_5532590
PublicationCentury 2000
PublicationDate 2010-April
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-April
PublicationDecade 2010
PublicationTitle 2010 International Conference on Machine Vision and Human-Machine Interface
PublicationTitleAbbrev MVHI
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452194
Score 1.4458015
Snippet To solve the flow pattern identification more difficult problem in electrical capacitance tomography (ECT) technology, a novel principal component analysis...
SourceID ieee
SourceType Publisher
StartPage 235
SubjectTerms Computer networks
Convergence
Data mining
Electrical capacitance tomography
Feature extraction
Fluid flow
Machine vision
neural network
Neural networks
Pattern recognition
Principal component analysis
Symmetric subspace
Title A Novel Principal Component Analysis Flow Pattern Identification Algorithm for Electrical Capacitance Tomography System
URI https://ieeexplore.ieee.org/document/5532590
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LT8JAEMc3yMmTGjC-swePFrZ02-0eCYGgCYQDGm5kn0osrSFFEj-9-2jBGA_e-kiayXaz89_Zmd8AcK_CWBJEeoEmSgaYYBykUpg9D-3JhMUaM9etYTJNxs_4aREvGuBhXwujlHLJZ6pjL91ZvizE1obKunEcGbVuNuhHJE18rdY-nmLR4KFF_fnaLYvJS2ukU31_YGx2Jy_jR5_YFdpm8D86qzjHMjoBk9okn0_y3tmWvCO-ftEa_2vzKWgfSvjgbO-czkBD5S2w68Np8aky88aF2FkG7XpQ5OYTsMaTwFFW7ODMcTdz6At5dRXZg_3stdisyrc1NGIXDl0PHfub4cA4XbEq7RyC82JdgbChB6K3wXw0nA_GQdV5IVhRVAYR1YJRxkNJkQxZKBKkmNENQiOpzOJufDqNkdSRZkwQISOKSSws_U1JyTmKzkEzN7ZfAChSI3AQ1kQqYVwf4ikVnDEsQs6lkWKXoGXHbPnh2RrLariu_n58DY796b3NnLkBzXKzVbdGFJT8zs2Gb_9FttE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8IwFMcbggc9qQHjb3vw6KBjLaNHQiBDGeEwDTfSn0ocmyFDEv962_0AYzx4249keemavm9f3_s8AO6VS6SP_I6jfSUd7GPs9KQwex7akV1GNGZ5t4Zw2g2e8eOczGvgYVcLo5TKk89Uy17mZ_kyFRsbKmsT4hm1bjboBwRjTIpqrV1ExcLBXQv7K6q3LCivV0Gdqvs9ZbMdvgTjIrXLte3gf_RWyV3L6BiElVFFRsl7a5Pxlvj6xWv8r9UnoLkv4oOznXs6BTWVNMC2D6fpp4rNmzzIzmJoV4Q0MZ-AFaAEjuJ0C2c5eTOBRSmvLmN7sB-_putl9raCRu7CYd5Fx_5oODBuVywzO4tglK5KFDYskOhNEI2G0SBwyt4LzpKizPGoFowy7kqKpMtc0UWKGeUgNJLKLO_Gq1OCpPY0Y8IX0qPYJ8Ly35SUnCPvDNQTY_s5gKJnJA7C2pdKGOeHeI8KzhgWLufSiLEL0LBjtvgo6BqLcrgu_358Bw6DKJwsJuPp0xU4Ks7ybR7NNahn6426MRIh47f5zPgGvrK6Hg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+International+Conference+on+Machine+Vision+and+Human-Machine+Interface&rft.atitle=A+Novel+Principal+Component+Analysis+Flow+Pattern+Identification+Algorithm+for+Electrical+Capacitance+Tomography+System&rft.au=Chen+Yu&rft.au=Song+Yuchen&rft.au=Zhang+Jian&rft.date=2010-04-01&rft.pub=IEEE&rft.isbn=9781424465958&rft.spage=235&rft.epage=238&rft_id=info:doi/10.1109%2FMVHI.2010.141&rft.externalDocID=5532590
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465958/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465958/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424465958/sc.gif&client=summon&freeimage=true