An improved epsilon constraint handling method embedded in MOEA/D for constrained multi-objective optimization problems

This paper proposes an improved epsilon constraint handling method embedded in the multi-objective evolutionary algorithm based on decomposition (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). More specifically, it dynamically adjusts the epsilon level, which is a critic...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Symposium Series on Computational Intelligence (SSCI) pp. 1 - 8
Main Authors Zhun Fan, Wenji Li, Xinye Cai, Hui Li, Han Huang, Zhaoquan Cai, Caimin Wei
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2016
Subjects
Online AccessGet full text
DOI10.1109/SSCI.2016.7850224

Cover

Abstract This paper proposes an improved epsilon constraint handling method embedded in the multi-objective evolutionary algorithm based on decomposition (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). More specifically, it dynamically adjusts the epsilon level, which is a critical parameter in the epsilon constraint method, according to the feasible ratio of solutions in the current population. In order to verify the effect of the improved epsilon constraint handling method, three algorithms - MOEA/D-CDP, MOEA/D-Epsilon, and MOEA/D-IEpsilon (MOEA/D with the improved epsilon constraint handling mechanism) are tested on nine CMOPs (CMOP1-CMOP9). The comprehensive experimental results indicate that the proposed epsilon constraint handling method is very effective on the performance of both convergence and diversity.
AbstractList This paper proposes an improved epsilon constraint handling method embedded in the multi-objective evolutionary algorithm based on decomposition (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). More specifically, it dynamically adjusts the epsilon level, which is a critical parameter in the epsilon constraint method, according to the feasible ratio of solutions in the current population. In order to verify the effect of the improved epsilon constraint handling method, three algorithms - MOEA/D-CDP, MOEA/D-Epsilon, and MOEA/D-IEpsilon (MOEA/D with the improved epsilon constraint handling mechanism) are tested on nine CMOPs (CMOP1-CMOP9). The comprehensive experimental results indicate that the proposed epsilon constraint handling method is very effective on the performance of both convergence and diversity.
Author Han Huang
Zhaoquan Cai
Caimin Wei
Wenji Li
Zhun Fan
Xinye Cai
Hui Li
Author_xml – sequence: 1
  surname: Zhun Fan
  fullname: Zhun Fan
  organization: Dept. of Electron. Eng., Shantou Univ., Shantou, China
– sequence: 2
  surname: Wenji Li
  fullname: Wenji Li
  organization: Dept. of Electron. Eng., Shantou Univ., Shantou, China
– sequence: 3
  surname: Xinye Cai
  fullname: Xinye Cai
  organization: Coll. of Comput. Sci. & Technol., Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China
– sequence: 4
  surname: Hui Li
  fullname: Hui Li
  organization: Sch. of Math. & Stat., Xi'an Jiaotong Univ., Xi'an, China
– sequence: 5
  surname: Han Huang
  fullname: Han Huang
  organization: Sch. of Software Eng., South China Univ. of Technol., Guangzhou, China
– sequence: 6
  surname: Zhaoquan Cai
  fullname: Zhaoquan Cai
  organization: Dept. of Comput. Sci., Huizhou Univ., Huizhou, China
– sequence: 7
  surname: Caimin Wei
  fullname: Caimin Wei
  organization: Dept. of Math., Shantou Univ., Shantou, China
BookMark eNpFULtOwzAUNRIMtPABiMU_kNSvxPEYhQKVijq0e-UkN_Si2I4SUwRfTyQqMZ3hPHUW5NoHD4Q8cJZyzsxqv682qWA8T3WRMSHUFVnwjBmmhGL6lnyVnqIbxnCGlsIwYR88bYKf4mjRR3qyvu3Rv1MH8RRmiauhbWctevq2W5erJ9qF8d8xM-6zj5iE-gOaiGegYYjo8MdGnKPnproHN92Rm872E9xfcEkOz-tD9Zpsdy-bqtwmaFhMpNZaGQtgDJvHZ3kmmYCCQc2lFtCAVHnDO2k7bYsWWFfnrRImU0Y2hnMhl-TxLxYB4DiM6Oz4fbxcIX8BOpRZ-g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SSCI.2016.7850224
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISBN 1509042407
9781509042401
EndPage 8
ExternalDocumentID 7850224
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-377749aee990022565302e80eb1372ece346c1f3af7a8de0fb6d4295493c91123
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:42 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-377749aee990022565302e80eb1372ece346c1f3af7a8de0fb6d4295493c91123
PageCount 8
ParticipantIDs ieee_primary_7850224
PublicationCentury 2000
PublicationDate 2016-Dec.
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationTitle 2016 IEEE Symposium Series on Computational Intelligence (SSCI)
PublicationTitleAbbrev SSCI
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7828095
Snippet This paper proposes an improved epsilon constraint handling method embedded in the multi-objective evolutionary algorithm based on decomposition (MOEA/D) to...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Evolutionary computation
Maintenance engineering
Optimization
Radiation detectors
Radio frequency
Sociology
Statistics
Title An improved epsilon constraint handling method embedded in MOEA/D for constrained multi-objective optimization problems
URI https://ieeexplore.ieee.org/document/7850224
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb4IwGG7Uk6d96LLv9LDjwEKBwtE4jVvitkSXeDPQviRsE4xiluzX721hmi077EYKDdCmz_O07xchN9z3hHBcx5KxH1texHwrdqW0fIdDoJhKnFTHO08eg_GL9zD35w1yu4uFAQDjfAa2vjS2fFXIrT4q64nQ15TTJE0RBlWsVm2odFjUm04H99pXK7Dr534UTDF8MTogk-83VW4ib_a2TGz5-SsJ438_5ZB095F59HnHOUekAfkxaWvFWCVc7pCPfk4zc1IAisJqk70XOZVaBepiECU1aRWwL61qR1NYJoDgo2iW08nTsN-7o6hj9z3wjnE6tIrktQJHWiDMLOv4TVpXpNl0yWw0nA3GVl1dwcoiViKwoPCLYgCkI_wT1HWcuRAyxG4uXJDAvUA6KY9TEYcKWJoEyjNGQS4RIF1-Qlp5kcMpoQJCXMa4tRHK8VzFYiYBWY8nvsTtmxRnpKMHcLGq8mcs6rE7_7v5grT1JFYuI5ekVa63cIXEXybXZsa_AN4_sTQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3LyBxh_24NHB93abnAkCAFlaAIm3MjWPpKpbERGTPzrfd0mROPB29Kt2dam3_va9773CLnhUnie7diWCmRgiRaTVuAoZUmbg6uZDu250Tv7I7f_LO6ncloitxstDABkwWdQN5eZL18nam2OyhpeUxqTs0N2pRBC5mqtwlVps1ZjPO4MTLSWWy-e_FEyJbMYvX3if78rDxR5ra_TsK4-f6Vh_O_HHJDaVptHnzZW55CUID4iFcMZ85TLVfLRjmmUnRWAprBcRW9JTJXhgaYcREqzxArYl-bVoyksQkD40TSKqf_YbTfuKDLZbQ-8k4UdWkn4ksMjTRBoFoWCkxY1aVY1Mul1J52-VdRXsKIWSxFakPq1AgA0SPgnyOw4c6DJEL2554ACLlxlz3kw94KmBjYPXS0ytyBXCJEOPyblOInhhFAPmriQcXPjaVs4mgVMAdo9HkqFGzjlnZKqGcDZMs-gMSvG7uzv5muy15_4w9lwMHo4JxUzoXkAyQUpp-9ruEQakIZX2ex_AU9YtIE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Symposium+Series+on+Computational+Intelligence+%28SSCI%29&rft.atitle=An+improved+epsilon+constraint+handling+method+embedded+in+MOEA%2FD+for+constrained+multi-objective+optimization+problems&rft.au=Zhun+Fan&rft.au=Wenji+Li&rft.au=Xinye+Cai&rft.au=Hui+Li&rft.date=2016-12-01&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FSSCI.2016.7850224&rft.externalDocID=7850224