A Practical Segmentation Method for Automated Screening of Cervical Cytology

In a full automatic cervical cytology screening process, one of the essential steps is the segmentation of cervical nuclei. Despite some progress, there is a need to improve sensitivity, speed, level of automation, and to reduce non-cellular artifacts. This paper presents a practical nuclei segmenta...

Full description

Saved in:
Bibliographic Details
Published in2011 International Conference on Intelligent Computation and Bio-Medical Instrumentation pp. 140 - 143
Main Authors Ling Zhang, Siping Chen, Tianfu Wang, Yan Chen, Shaoxiong Liu, Minghua Li
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2011
Subjects
Online AccessGet full text
ISBN9781457711527
1457711524
DOI10.1109/ICBMI.2011.4

Cover

Abstract In a full automatic cervical cytology screening process, one of the essential steps is the segmentation of cervical nuclei. Despite some progress, there is a need to improve sensitivity, speed, level of automation, and to reduce non-cellular artifacts. This paper presents a practical nuclei segmentation algorithm for solving these problems. The proposed approach first preprocess the V channel image from the HSV color space thus allowing accentuating the contrast between nuclei/leukocyte and cytoplast. In order to overcome the non-uniform illumination, the adaptive thresholding algorithm is utilized. Two characteristics named shape factor and roundness are introduced to validate if a segmented region is overlapped nuclei. Further, by exploring a concave-point based segmentation algorithm, overlapped even multi-overlapped nucleus can be separated. Experiment results carried out on 200 images (100 malignant and 100 normal) show that comparing with the past work [7], our approach can detect more malignant nuclei, less under-segmented normal nuclei, less debris/inflammatory cells and binarization error. Currently, our implementation on 1.9GHz dual-core computer takes 0.56s/image, on average. The proposed segmentation algorithm has potential application in full automated screening of cervical cytology. Furthermore, our algorithm shows promising performance when comparing with [14] on histopathological images.
AbstractList In a full automatic cervical cytology screening process, one of the essential steps is the segmentation of cervical nuclei. Despite some progress, there is a need to improve sensitivity, speed, level of automation, and to reduce non-cellular artifacts. This paper presents a practical nuclei segmentation algorithm for solving these problems. The proposed approach first preprocess the V channel image from the HSV color space thus allowing accentuating the contrast between nuclei/leukocyte and cytoplast. In order to overcome the non-uniform illumination, the adaptive thresholding algorithm is utilized. Two characteristics named shape factor and roundness are introduced to validate if a segmented region is overlapped nuclei. Further, by exploring a concave-point based segmentation algorithm, overlapped even multi-overlapped nucleus can be separated. Experiment results carried out on 200 images (100 malignant and 100 normal) show that comparing with the past work [7], our approach can detect more malignant nuclei, less under-segmented normal nuclei, less debris/inflammatory cells and binarization error. Currently, our implementation on 1.9GHz dual-core computer takes 0.56s/image, on average. The proposed segmentation algorithm has potential application in full automated screening of cervical cytology. Furthermore, our algorithm shows promising performance when comparing with [14] on histopathological images.
Author Ling Zhang
Siping Chen
Tianfu Wang
Yan Chen
Shaoxiong Liu
Minghua Li
Author_xml – sequence: 1
  surname: Ling Zhang
  fullname: Ling Zhang
  email: zhangling0722@163.com
  organization: Biomed. Eng., Zhejiang Univ., Hangzhou, China
– sequence: 2
  surname: Siping Chen
  fullname: Siping Chen
  email: chensiping@szu.edu.cn
  organization: Biomed. Eng., Shenzhen Univ., Shenzhen, China
– sequence: 3
  surname: Tianfu Wang
  fullname: Tianfu Wang
  organization: Biomed. Eng., Shenzhen Univ., Shenzhen, China
– sequence: 4
  surname: Yan Chen
  fullname: Yan Chen
  organization: Bio-Comput. Center, Harbin Inst. of Technol., Shenzhen, China
– sequence: 5
  surname: Shaoxiong Liu
  fullname: Shaoxiong Liu
  organization: Dept. of Pathology, Nanshan Hosp., Shenzhen, China
– sequence: 6
  surname: Minghua Li
  fullname: Minghua Li
  organization: Dept. of Pathology, Nanshan Hosp., Shenzhen, China
BookMark eNpVjL1OwzAURo0ACSjd2Fj8Ag33xk5cjyHiJ1IrkNq9suPrEtTayDFIfXsqYOEsn87wnSt2FmIgxm4QCkTQd117v-yKEhALecKmWs1RVkohVgin_7xUF2w6ju9wpK61AnXJFg1_TabPQ292fEXbPYVs8hADX1J-i477mHjzmePeZHJ81SeiMIQtj563lL5-fu0hx13cHq7ZuTe7kaZ_O2Hrx4d1-zxbvDx1bbOYDRryTEhle2mdFqisltqhEa5Hr0rprLAWoaw9VA6McnOjrLFAdS2d91jNAXoxYbe_2YGINh9p2Jt02NR47AkhvgELm1AT
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICBMI.2011.4
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781457711510
0769546234
9780769546230
1457711516
EndPage 143
ExternalDocumentID 6131733
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-347bc4bd9317b949d1a3dc1f724db3bb1026f05d0a7d8a7bab0e664dff15800c3
IEDL.DBID RIE
ISBN 9781457711527
1457711524
IngestDate Wed Aug 27 04:12:36 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-347bc4bd9317b949d1a3dc1f724db3bb1026f05d0a7d8a7bab0e664dff15800c3
PageCount 4
ParticipantIDs ieee_primary_6131733
PublicationCentury 2000
PublicationDate 2011-Dec.
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-Dec.
PublicationDecade 2010
PublicationTitle 2011 International Conference on Intelligent Computation and Bio-Medical Instrumentation
PublicationTitleAbbrev icbmi
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669707
ssib026766923
Score 1.5384768
Snippet In a full automatic cervical cytology screening process, one of the essential steps is the segmentation of cervical nuclei. Despite some progress, there is a...
SourceID ieee
SourceType Publisher
StartPage 140
SubjectTerms Algorithm design and analysis
Cancer
cervical cytology
Clustering algorithms
Color
Image color analysis
Image segmentation
nuclei segmentation
Shape
V channel
Title A Practical Segmentation Method for Automated Screening of Cervical Cytology
URI https://ieeexplore.ieee.org/document/6131733
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA3bTp5UNvE3OXi0W9qkSXOcxbGJFWETdhv5VRGxFWkP8683SduJ4sFbWwh8zVfyvSbvvQ-AK2qjUxEyQZhzERBhnFg5x4GR2hm8kST2B-3ZA50_kbt1vO6B650WxhjjyWdm7C79Wb4uVe22yia29IQM4z7os4Q2Wq3u24koo7T7FWhWYcoZYl7LFTNmgU9EOoun9p7tiPB8skhvskXj6El-NFrxdWa2D7IuwoZe8jquKzlWn7_MG__7Cgdg9K3og4-7WnUIeqYYgvspbOyKbJ7g0jy_tTqkAma-rzS0gBZO66q0qNZouFSOo2OHwzKHqV9j7Lh06zvgbkdgNbtdpfOg7a4QvHBUBZgwqYjU3MYjOeE6FFirMGcR0RJLaYEHzVGskWA6EUwKiQylROd5GFuQqfARGBRlYY4BVDKSsaEktDknIkmEhXFCIWdrQ3kcJSdg6CZi8974Z2zaOTj9-_EZ2PP7tp4ycg4G1UdtLmzhr-Slz_gX0PmoSg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsNAFB1qXehKpRXfzsKlafOYR2ZZg9JqU4RW6K7MKyJiIpIs6tc7M0kqigt3SWDgZm6YezJzzrkAXBETnQx97QUZ4x7i2oqVs8jTQlmDNxRjd9Cezsj4Cd0v8bIDrjdaGK21I5_pgb10Z_mqkJXdKhua0hPQKNoC2xghhGu1Vvv1hIQS0v4M1OswYdSnTs2FKTXQJ0StyVNzTzdUeDacJDfppPb0RD9arbhKc7cH0jbGmmDyOqhKMZCfv-wb__sS-6D_remDj5tqdQA6Ou-B6QjWhkUmU3Cun98aJVIOU9dZGhpIC0dVWRhcqxWcS8vSMcNhkcHErTJmXLJ2PXDXfbC4u10kY6_pr-C9ML_0IkSFREIxE49giKmAR0oGGQ2REpEQBnqQzMfK51TFnAoufE0IUlkWYAMzZXQIunmR6yMApQgF1gQFJuuIxzE3QI5L3xrbEIbD-Bj07ESs3msHjVUzByd_P74EO-NFOl1NJ7OHU7DrdnEdgeQMdMuPSp8bGFCKC5f9L9fNq5c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+International+Conference+on+Intelligent+Computation+and+Bio-Medical+Instrumentation&rft.atitle=A+Practical+Segmentation+Method+for+Automated+Screening+of+Cervical+Cytology&rft.au=Ling+Zhang&rft.au=Siping+Chen&rft.au=Tianfu+Wang&rft.au=Yan+Chen&rft.date=2011-12-01&rft.pub=IEEE&rft.isbn=9781457711527&rft.spage=140&rft.epage=143&rft_id=info:doi/10.1109%2FICBMI.2011.4&rft.externalDocID=6131733
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457711527/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457711527/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457711527/sc.gif&client=summon&freeimage=true